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Abstract—Malicious applications pose a threat to the security
of the Android platform. The growing amount and diversity of
these applications render conventional defenses largely ineffective
and thus Android smartphones often remain unprotected from
novel malware. In this paper, we propose DREBIN, a lightweight
method for detection of Android malware that enables identifying
malicious applications directly on the smartphone. As the limited
resources impede monitoring applications at run-time, DREBIN
performs a broad static analysis, gathering as many features
of an application as possible. These features are embedded in
a joint vector space, such that typical patterns indicative for
malware can be automatically identified and used for explaining
the decisions of our method. In an evaluation with 123,453
applications and 5,560 malware samples DREBIN outperforms
several related approaches and detects 94% of the malware
with few false alarms, where the explanations provided for each
detection reveal relevant properties of the detected malware.
On five popular smartphones, the method requires 10 seconds
for an analysis on average, rendering it suitable for checking
downloaded applications directly on the device.

I. INTRODUCTION

Android is one of the most popular platforms for smart-
phones today. With several hundred thousands of applications
in different markets, it provides a wealth of functionality
to its users. Unfortunately, smartphones running Android are
increasingly targeted by attackers and infected with malicious
software. In contrast to other platforms, Android allows for
installing applications from unverified sources, such as third-
party markets, which makes bundling and distributing applica-
tions with malware easy for attackers. According to a recent
study over 55,000 malicious applications and 119 new malware
families have been discovered in 2012 alone [18]. It is evident
that there is a need for stopping the proliferation of malware
on Android markets and smartphones.

The Android platform provides several security measures
that harden the installation of malware, most notably the
Android permission system. To perform certain tasks on the
device, such as sending a SMS message, each application
has to explicitly request permission from the user during
the installation. However, many users tend to blindly grant

permissions to unknown applications and thereby undermine
the purpose of the permission system. As a consequence,
malicious applications are hardly constrained by the Android
permission system in practice.

A large body of research has thus studied methods for
analyzing and detecting Android malware prior to their in-
stallation. These methods can be roughly categorized into
approaches using static and dynamic analysis. For example,
TaintDroid [11], DroidRanger [40] and DroidScope [37] are
methods that can monitor the behavior of applications at run-
time. Although very effective in identifying malicious activity,
run-time monitoring suffers from a significant overhead and
can not be directly applied on mobile devices. By contrast,
static analysis methods, such as Kirin [13], Stowaway [15]
and RiskRanker [21], usually induce only a small run-time
overhead. While these approaches are efficient and scalable,
they mainly build on manually crafted detection patterns which
are often not available for new malware instances. Moreover,
most of these methods do not provide explanations for their
decisions and are thus opaque to the practitioner.

In this paper, we present DREBIN, a lightweight method
for detection of Android malware that infers detection patterns
automatically and enables identifying malware directly on
the smartphone. DREBIN performs a broad static analysis,
gathering as many features from an application’s code and
manifest as possible. These features are organized in sets of
strings (such as permissions, API calls and network addresses)
and embedded in a joint vector space. As an example, an
application sending premium SMS messages is cast to a
specific region in the vector space associated with the cor-
responding permissions, intents and API calls. This geometric
representation enables DREBIN to identify combinations and
patterns of features indicative for malware automatically using
machine learning techniques. For each detected application the
respective patterns can be extracted, mapped to meaningful
descriptions and then provided to the user as explanation for
the detection. Aside from detection, DREBIN can thus also
provide insights into identified malware samples.

Experiments with 123,453 applications from different mar-
kets and 5,560 recent malware samples demonstrate the effi-
cacy of our method: DREBIN outperforms related approaches
[13, 26, 33] as well as 9 out of 10 popular anti-virus scanners.
The method detects 94% of the malware samples with a false-
positive rate of 1%, corresponding to one false alarm in 100
installed applications. On average the analysis of an application
requires less than a second on a regular computer and 10
seconds on popular smartphone models. To the best of our
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Fig. 1: Schematic depiction of the analysis steps performed by DREBIN.

knowledge, DREBIN is the first method which provides effec-
tive and explainable detection of Android malware directly on
smartphone devices.

In summary, we make the following contributions to the
detection of Android malware in this paper:

• Effective detection. We introduce a method combining
static analysis and machine learning that is capable
of identifying Android malware with high accuracy
and few false alarms, independent of manually crafted
detection patterns.

• Explainable results. The proposed method provides an
explainable detection. Patterns of features indicative
for a detected malware instance can be traced back
from the vector space and provide insights into the
detection process.

• Lightweight analysis. For efficiency we apply linear-
time analysis and learning techniques that enable
detecting malware on the smartphone as well as ana-
lyzing large sets of applications in reasonable time.

We need to note here that DREBIN builds on concepts
of static analysis and thus cannot rule out the presence of
obfuscated or dynamically loaded malware on mobile devices.
We specifically discuss this limitation of our approach in
Section IV. Due to the broad analysis of features however,
our method raises the bar for attackers to infect smartphones
with malicious applications and strengthens the security of the
Android platform, as demonstrated in our evaluation.

The rest of this paper is organized as follows: DREBIN
and its detection methodology are introduced in Section II.
Experiments and a comparison with related approaches are
presented in Section III. Limitations and related work are
discussed in Section IV and Section V, respectively. Section VI
concludes the paper.

II. METHODOLOGY

To detect malicious software on a smartphone, DREBIN
requires a comprehensive yet lightweight representation of
applications that enables determining typical indications of
malicious activity. To this end, our method employs a broad
static analysis that extracts feature sets from different sources
and analyzes these in an expressive vector space. This process
is illustrated in Figure 1 and outlined in the following:

a) Broad static analysis. In the first step, DREBIN statically
inspects a given Android application and extracts different
feature sets from the application’s manifest and dex code
(Section II-A).

b) Embedding in vector space. The extracted feature sets are
then mapped to a joint vector space, where patterns and
combinations of the features can be analyzed geometrically
(Section II-B).

c) Learning-based detection. The embedding of the featue sets
enables us to identify malware using efficient techniques of
machine learning, such as linear Support Vector Machines
(Section II-C).

d) Explanation. In the last step, features contributing to the
detection of a malicious application are identified and
presented to the user for explaining the detection process
(Section II-D).

In the following sections, we discuss these four steps in
more detail and provide necessary technical background of the
analysis.

A. Static Analysis of Applications

As the first step, DREBIN performs a lightweight static
analysis of a given Android application. Although apparently
straightforward, the static extraction of features needs to run in
a constrained environment and complete in a timely manner.
If the analysis takes too long, the user might skip the ongoing
process and refuse the overall method. Accordingly, it becomes
essential to select features which can be extracted efficiently.

We thus focus on the manifest and the disassembled dex
code of the application, which both can be obtained by a linear
sweep over the application’s content. To allow for a generic
and extensible analysis, we represent all extracted features as
sets of strings, such as permissions, intents and API calls. In
particular, we extract the following 8 sets of strings.

1) Feature sets from the manifest: Every application devel-
oped for Android must include a manifest file called Android-
Manifest.xml which provides data supporting the installation
and later execution of the application. The information stored
in this file can be efficiently retrieved on the device using the
Android Asset Packaging Tool that enables us to extract the
following sets:

S1 Hardware components: This first feature set contains re-
quested hardware components. If an application requests
access to the camera, touchscreen or the GPS module
of the smartphone, these features need to be declared in
the manifest file. Requesting access to specific hardware
has clearly security implications, as the use of certain
combinations of hardware often reflects harmful behavior.
An application which has access to GPS and network
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modules is, for instance, able to collect location data and
send it to an attacker over the network.

S2 Requested permissions: One of the most important secu-
rity mechanisms introduced in Android is the permission
system. Permissions are actively granted by the user at in-
stallation time and allow an application to access security-
relevant resources. As shown by previous work [13, 33],
malicious software tends to request certain permissions
more often than innocuous applications. For example, a
great percentage of current malware sends premium SMS
messages and thus requests the SEND_SMS permission.
We thus gather all permissions listed in the manifest in a
feature set.

S3 App components: There exist four different types of com-
ponents in an application, each defining different inter-
faces to the system: activities, services, content providers
and broadcast receivers. Every application can declare
several components of each type in the manifest. The
names of these components are also collected in a feature
set, as the names may help to identify well-known compo-
nents of malware. For example, several variants of the so-
called DroidKungFu family share the name of particular
services [see 24].

S4 Filtered intents: Inter-process and intra-process commu-
nication on Android is mainly performed through in-
tents: passive data structures exchanged as asynchronous
messages and allowing information about events to be
shared between different components and applications.
We collect all intents listed in the manifest as another
feature set, as malware often listens to specific intents. A
typical example of an intent message involved in malware
is BOOT_COMPLETED, which is used to trigger malicious
activity directly after rebooting the smartphone.

2) Feature sets from disassembled code: Android appli-
cations are developed in Java and compiled into optimized
bytecode for the Dalvik virtual machine. This bytecode can be
efficiently disassembled and provides DREBIN with informa-
tion about API calls and data used in an application. To achieve
a low run-time, we implement a lightweight disassembler
based on the dex libraries of the Android platform that can
output all API calls and strings contained in an application.
We use this information to construct the following feature sets.

S5 Restricted API calls: The Android permission system
restricts access to a series of critical API calls. Our
method searches for the occurrence of these calls in the
disassembled code in order to gain a deeper understanding
of the functionality of an application. A particular case,
revealing malicious behavior, is the use of restricted API
calls for which the required permissions have not been
requested. This may indicate that the malware is using
root exploits in order to surpass the limitations imposed
by the Android platform.

S6 Used permissions: The complete set of calls extracted
in S5 is used as the ground for determining the sub-
set of permissions that are both requested and actually
used. For this purpose, we implement the method in-
troduced by Felt et al. [15] to match API calls and
permissions. In contrast to S5, this feature set provides
a more general view on the behavior of an application

as multiple API calls can be protected by a single
permission (e.g., sendMultipartTextMessage() and
sendTextMessage() both require that the SEND_SMS
permission is granted to an application).

S7 Suspicious API calls: Certain API calls allow access to
sensitive data or resources of the smartphone and are
frequently found in malware samples. As these calls can
specially lead to malicious behavior, they are extracted
and gathered in a separated feature set. In particular, we
collect the following types of API calls:

• API calls for accessing sensitive data, such as
getDeviceId() and getSubscriberId()

• API calls for network communication, for example
execHttpRequest() and setWifiEnabled()

• API calls for sending and receiving SMS mes-
sages, such as sendTextMessage()

• API calls for execution of external commands like
Runtime.exec()

• API calls frequently used for obfuscation, such as
Cipher.getInstance()

S8 Network addresses: Malware regularly establishes net-
work connections to retrieve commands or exfiltrate data
collected from the device. Therefore, all IP addresses,
hostnames and URLs found in the disassembled code
are included in the last set of features. Some of these
addresses might be involved in botnets and thus present
in several malware samples, which can help to improve
the learning of detection patterns.

B. Embedding in Vector Space

Malicious activity is usually reflected in specific patterns
and combinations of the extracted features. For example, a
malware sending premium SMS messages might contain the
permission SEND_SMS in set S2, and the hardware component
android.hardware.telephony in set S1. Ideally, we would
like to formulate Boolean expressions that capture these de-
pendencies between features and return true if a malware is
detected. However, inferring Boolean expressions from real-
world data is a hard problem and difficult to solve efficiently.

As a remedy, we aim at capturing the dependencies be-
tween features using concepts from machine learning. As most
learning methods operate on numerical vectors, we first need
to map the extracted feature sets to a vector space. To this end,
we define a joint set S that comprises all observable strings
contained in the 8 feature sets

S := S1 [ S2 [ · · · [ S8.

We ensure that elements of different sets do not collide by
adding a unique prefix to all strings in each feature set. In
our evaluation the set S contains roughly 545,000 different
features (see Section III).

Using the set S, we define an |S|-dimensional vector space,
where each dimension is either 0 or 1. An application x is
mapped to this space by constructing a vector '(x), such that
for each feature s extracted from x the respective dimension
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is set to 1 and all other dimensions are 0. Formally, this map
' can be defined for a set of applications X as follows

' : X ! {0, 1}|S|, '(x) 7!
�
I(x, s)

�
s2S

where the indicator function I(x, s) is simply defined as

I(x, s) =

⇢
1 if the application x contains feature s

0 otherwise.

Applications sharing similar features lie close to each other in
this representation, whereas applications with mainly different
features are separated by large distances. Moreover, directions
in this space can be used to describe combinations of features
and ultimately enable us to learn explainable detection models.

Let us, as an example, consider a malicious application that
sends premium SMS messages and thus needs to request cer-
tain permissions and hardware components. A corresponding
vector '(x) for this application looks like this

'(x) 7!

0

BBBBBB@

· · ·
0
1

· · ·
1
0

· · ·

1

CCCCCCA

· · · �
S1android.hardware.wifi

android.hardware.telephony
· · · �

S2SEND_SMS
DELETE_PACKAGES

· · ·

At a first glance, the map ' seems inappropriate for the
lightweight analysis of applications, as it embeds data into
a high-dimensional vector space. Fortunately, the number of
features extracted from an application is linear in its size.
That is, an application x containing m bytes of code and data
contains at most m feature strings. As a consequence, only
m dimensions are non-zero in the vector '(x)—irrespective
of the dimension of the vector space. It thus suffices to only
store the features extracted from an application for sparsely
representing the vector '(x), for example, using hash tables [6]
or Bloom filters [3].

C. Learning-based Detection

In the third step, we apply machine learning techniques
for automatically learning a separation between malicious
and benign applications. The application of machine learning
spares us from manually constructing detection rules for the
extracted features.

While several learning methods can be applied to learn a
separation between two classes, only few methods are capable
of producing an efficient and explainable detection model. We
consider linear Support Vector Machines (SVM) [8, 14] for
this task. Given vectors of two classes as training data, a linear
SVM determines a hyperplane that separates both classes with
maximal margin (see Fig. 2). One of these classes is associated
with malware, whereas the other class corresponds to benign
applications. An unknown application is classified by mapping
it to the vector space and determing whether it falls on the
malicious (+) or benign (�) side of the hyperplane.

Formally, the detection model of a linear SVM simply
corresponds to a vector w 2 R|S| specifying the direction of

hyperplane with
maximum margin

malicious applications

benign applications

φ(x)

}w
〈φ(x),w〉

Fig. 2: Schematic depiction of an SVM

the hyperplane, where the corresponding detection function f
is given by

f(x) = h'(x), wi =
X

s2S

I(x, s) · w
s

and returns the orientation of '(x) with respect to w. That
is, f(x) > t indicates malicious activity, while f(x)  t
corresponds to benign applications for a given threshold t.

To compute the function f efficiently, we again exploit the
sparse representation of the map '. Given an application x, we
know that only features extracted from x have non-zero entries
in '(x). All other dimensions are zero and do not contribute to
the computation of f(x). Hence, we can simplify the detection
function f as follows

f(x) =
X

s2S

I(x, s) · w
s

=
X

s2x

w
s

.

Instead of an involved learning model, we finally arrive at
simple sum that can be efficiently computed by just adding
the weight w

s

for each feature s in an application x. This
formulation enables us to apply a learned detection model on
a smartphone and also allows us to explain results obtained by
the Support Vector Machine.

Offline learning: In our implementation we do not learn
a detection model on the smartphone. Instead, we train the
Support Vector Machine offline on a dedicated system and only
transfer the learned model w to the smartphone for detecting
malicious applications.

D. Explanation

In practice, a detection system must not only indicate
malicious activity, but also provide explanations for its de-
tection results. It is a common shortcoming of learning-based
approaches that they are black-box methods [34]. In the
case of DREBIN, we address this problem and extend our
learning-based detection, such that it can identify features of
an application that contribute to a detection. Moreover, an
explainable detection may also help researchers to inspect
patterns in malware and gain a deeper understanding of its
functionality.

By virtue of the simple detection function of the linear
SVM, we are able to determine the contribution of each single
feature s to the function f(x). During the computation of f(x),
we just need to store the largest k weights w

s

shifting the
application to the malicious side of the hyperplane. Since each
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weight w
s

is assigned to a certain feature s, it is then possible
to explain why an application has been classified as malicious
or not. This approach can be efficiently realized by maintaining
the k largest weights w

s

in a heap during the computation of
the function f(x) [6].

After extracting the top k features by their weights,
DREBIN automatically constructs sentences which describe the
functionality underlying these features. To achieve this goal
we design sentence templates for each feature set which can
be completed using the respective feature. Table I lists these
templates. For features frequently observed in malware, such as
the permission SEND_SMS, we provide individual descriptions.

Feature set Explanation

S1 Hardware features App uses %s feature %s.
S2 Requested permissions App requests permission to access %s.
S3 App components App contains suspicious component %s.
S4 Filtered intents Action is triggered by %s.
S5 Restricted API calls App calls function %s to access %s.
S6 Used permissions App uses permissions %s to access %s.
S7 Suspicious API calls App uses suspicious API call %s.
S8 Network addresses Communication with host %s.

TABLE I: Templates for explanation.

For most of the feature sets, the construction of sentences
from the templates in Table I is straightforward. For example,
for the hardware features we make use of their naming
scheme to construct meaningful sentences. If an application
for instance uses the android.hardware.camera feature,
DREBIN presents the sentence ”App uses hardware feature
camera.” to the user.

Similarly, we provide explanations for requested and used
permissions. The explanation for a permissions can be de-
rived from the Android documentation which provides proper
descriptions—at least for all system permissions. We slightly
modify these descriptions in order to present meaningful ex-
planations to the user. However, due to the fact that application
developers are able to define custom permissions we also
provide a generic sentence which is presented to the user if no
proper description exists. We follow the same approach for the
restricted API calls that build on the use of certain permissions.
For all other feature sets the templates are directly filled with
either the feature’s name or a corresponding place holder.

An example of an explanation generated by DREBIN is
shown in Figure 3. The presented sample belongs to the
GoldDream family. DREBIN correctly identifies that the mal-
ware communicates with an external server and sends SMS
messages. The application requests 16 permissions during the
installation process. Many users ignore such long lists of
permissions and thereby fall victim to this type of malware.
In contrast to the conventional permission-based approach
DREBIN draws the user’s attention directly to relevant aspects
indicating malicious activity. Furthermore, DREBIN presents a
score to the user which tells him how confident the decision
is. As a result, the user is able to decide whether the presented
functionality matches his expectation or not.

In addition to the benefit for the user, the generated
explanations can also help researchers to discover relevant
patterns in common malware families. We discuss this aspect
in more detail in the following section.

Fig. 3: Result for a member of the GoldDream family.

III. EVALUATION

After presenting DREBIN in detail, we now proceed to an
empirical evaluation of its efficacy. In particular, we conduct
the following three experiments:

1) Detection performance. First, we evaluate the detection
performance of DREBIN on a dataset of 5,560 malware
samples and 123,453 benign applications. We compare
its performance against related approaches and anti-virus
scanners (Section III-B).

2) Explainability. In the second experiment, we analyze the
explanations provided by DREBIN in detail for different
malware families and verify whether they relate to actual
characteristics of the malware (Section III-C).

3) Run-time performance. Finally, we evaluate the run-time
performance of DREBIN. For this experiment we con-
duct different run-time measurements using five common
smartphone models as well as a regular desktop computer
(Section III-D).

A. Data sets

For all experiments, we consider a dataset of real Android
applications and real malware. In particular, we have acquired
an initial dataset of 131,611 applications comprising benign as
well as malicious software. The samples have been collected
in the period from August 2010 to October 2012. In detail,
the dataset contains 96,150 applications from the GooglePlay
Store, 19,545 applications from different alternative Chinese
Markets, 2,810 applications from alternative Russian Markets
and 13,106 samples from other sources, such as Android
websites, malware forums and security blogs. Additionally,
the dataset includes all samples from the Android Malware
Genome Project [39].

To determine malicious and benign applications, we send
each sample to the VirusTotal service and inspect the output
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DREBIN AV1 AV2 AV3 AV4 AV5 AV6 AV7 AV8 AV9 AV10

Full dataset 93.90% 96.41% 93.71% 84.66% 84.54% 78.38% 64.16% 48.50% 48.34% 9.84% 3.99%
Malgenome 95.90% 98.63% 98.90% 98.28% 98.07% 98.66% 96.49% 94.67% 84.23% 23.68% 1.12%

TABLE II: Detection rates of DREBIN and anti-virus scanners.

of ten common anti-virus scanners (AntiVir, AVG, BitDe-
fender, ClamAV, ESET, F-Secure, Kaspersky, McAfee, Panda,
Sophos). We flag all applications as malicious that are detected
by at least two of the scanners. This procedure ensures that
our data is (almost) correctly split into benign and malicious
samples—even if one of the ten scanners falsely labels a benign
application as malicious.

Finally, we remove samples labeled as adware from our
dataset, as this type of software is in a twilight zone between
malware and benign functionality. The final dataset contains
123,453 benign applications and 5,560 malware samples. To
the best of our knowledge, this is one of the largest malware
datasets that has been used to evaluate a malware detection
method on Android.

An overview of the top 20 malware families in our dataset
is provided in Table 4(c) including several families that are
currently actively distributed in application markets. Note that
only the top 20 families are shown and our dataset contains
1,048 further malicious samples.

B. Detection Performance

In our first experiment, we evaluate the detection perfor-
mance of DREBIN and related static detection approaches. For
this experiment, we randomly split the dataset into a known
partition (66%) and an unknown partition (33%). The detection
model and respective parameters of DREBIN are determined
on the known partition, whereas the unknown partition is only
used for measuring the final detection performance. We repeat
this procedure 10 times and average results. The partitioning
ensures that reported results only refer to malicious appli-
cations unknown during the learning phase of DREBIN. For
the related approaches, such as Kirin [13] and RCP [33] this
experimental procedure differs slightly, since not all methods
require a separate training step.

1) Comparison with related approaches: We first compare
the performance of DREBIN against related static approaches
for detection of Android malware. In particular, we consider
the methods Kirin [13], RCP [33] and the approach by Peng et
al. [26], where we implement the latter using an SVM instead
of a Naive Bayes classifier. The results of this experiments are
shown in Figure 4(a) as ROC curve, that is, the detection rate
(true-positive rate) is plotted against the false-positive rate for
different thresholds of the detection methods.

DREBIN significantly outperforms the other approaches and
detects 94% of the malware samples at a false-positive rate
of 1%, corresponding to one false alarm when installing 100
applications. The other approaches provide a detection rate be-
tween 10%–50% at this false-positive rate. As Kirin and RCP
both consider only a subset of the requested permissions, they
have obvious limitations in detecting malicious applications.
Even the method by Peng et al. which considers all permissions

is unable to detect malware with sufficient accuracy in this
experiment. The good performance of DREBIN results from the
different feature sets that are used to model malicious activity.
These sets include the requested permissions but also contain
other relevant characteristics of applications, such as suspicious
API calls, filtered intents and network addresses.

2) Comparison with AV scanners: Although DREBIN
shows a better performance compared to related approaches,
in the end it has to compete with common anti-virus products
in practice. Consequently, we also compare it against the
ten selected anti-virus scanners on our dataset. The detection
performance of each scanner is again taken from the VirusTotal
service. We run two experiments where we first consider all
malware samples of our dataset and then only those samples
provided by the Malgenome project [39]. We choose a false-
positive rate of 1% for DREBIN which we think is sufficiently
low for practical operation.

The results of the experiments are shown in Table II. The
detection rate of the anti-virus scanners varies considerably.
While the best scanners detect over 90% of the malware, some
scanners discover less than 10% of the malicious samples,
likely due to not being specialized in detecting Android
malware. On the full dataset DREBIN provides the second best
performance with a detection of 93.9% and outperforms 9 out
of the 10 scanners. This observation is remarkable since, due
to our test setting, at least two scanners should be able to detect
each malware sample. Therefore, each sample has to be known
for a certain amount time and most anti-virus scanners should
be equipped with a corresponding signature. However, the
automatically generated detection model of DREBIN proves to
be more effective than the manually crafted signatures of many
scanners. On the Malgenome dataset the anti-virus scanners
achieve better detection rates, since these samples have been
public for a longer period of time. Hence, almost all anti-virus
scanners provide proper signatures for this dataset.

The false-positive rates of the anti-virus scanners range
from 0% to 0.3% on our dataset of benign applications and
thus are slightly below DREBIN’s performance. Despite the
vast number of available Android applications, the average user
only installs some dozens of applications on his device. For
example, according to Nielsen1, a market research company,
the average number of installed applications per smartphone in
the U.S. has been 32 in 2011 and 41 in 2012. Consequently,
we consider a false-positive rate of 1% still acceptable for
operating DREBIN in practice.

3) Detection of malware families: Another important as-
pect that should be considered when testing the detection
performance of a method is the balance of malware families in
the dataset [32]. If the number of samples of certain malware

1Nielsen Report: “State of the Appnation – A Year of Change and Growth
in U.S. Smartphones”
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(a) Detection performance as ROC curve. (b) Detection per malware family.

Id Family # Id Family #

A FakeInstaller 925 K Adrd 91
B DroidKungFu 667 L DroidDream 81
C Plankton 625 M LinuxLotoor 70
D Opfake 613 N GoldDream 69
E GingerMaster 339 O MobileTx 69
F BaseBridge 330 P FakeRun 61
G Iconosys 152 Q SendPay 59
H Kmin 147 R Gappusin 58
I FakeDoc 132 S Imlog 43
J Geinimi 92 T SMSreg 41

Table 1: Top 20 malware families in our dataset and the
number of their occurrences (#). The family names are
derived from the labels of the Kaspersky AV scanner.

3.1 Data sets
For all experiments, we consider a dataset of real An-
droid applications and real malware. In particular, we
have acquired an initial dataset of 131,398 applications
comprising benign as well as malicious software. The
samples have been collected in the period from August
2010 to October 2012 from several sources including the
Google Play Store, Asian third-party markets and mal-
ware forums. The dataset also includes all samples from
the Malgenome project [? ].

To determine malicious and benign applications, we
send each sample to the VirusTotal service and inspect
the output of ten common anti-virus scanners (AntiVir,
AVG, BitDefender, ClamAV, ESET, F-Secure, Kasper-
sky, McAfee, Panda, Sophos). We flag all applications
as malicious that are at least detected by one of the scan-
ners. This procedure ensures that our data is correctly
split into benign and malicious samples—leaving aside a
small fraction of applications that might be missed by all
ten scanners.

Finally, we remove samples labeled as adware from
our dataset, as this type of software is in a twilight zone
between malware and benign functionality. The final
dataset contains 122,629 benign application and 6,526
malware samples. To the best of our knowledge, this is
one of the largest malware datasets that has been used to
evaluate a malware detection method on Android.

An overview of the top 20 malware families in our
dataset is provided in Table 1 including several families
that are currently actively distributed in application mar-
kets. Note that only the top 20 families are shown and
our dataset contain 1,227 further malicious samples.

3.2 Detection Performance
In our first experiment, we evaluate the detection perfor-
mance of DREBIN and related static approaches.

Experimental procedure. We randomly split the
dataset into a known partition (66%) and an unknown
partition (33%). The detection model and respective pa-
rameters of the support vector machine are determined
on the known partition, whereas the unknown partition is
only used for measuring the final detection performance.
We repeat this procedure 10 times and average results.
The partitioning ensures that reported results only refer
to malicious applications unknown during the learning
phase of DREBIN. For the related approaches, such as
Kirin [? ] and RPC [? ] the experimental procedure
differs slightly, since not all methods require a separate
training step.

Comparison with related approaches We first com-
pare the performance of DREBIN against related static
approaches for detection of Android malware. In partic-
ular, we consider the methods Kirin [? ], RPC [? ] and
the approach by Peng et al. [? ], where we implement
the latter using support vector machines instead of a ba-
sic Naive Bayes classier. The results of this experiments
are shown in Figure 3 as ROC curve, that is, the detec-
tion of malware (true-positive rate) is plotted against the
number of false alarms (false-positive rate) for different
thresholds of the detection methods.

Figure 3: Detection performance of DREBIN and the re-
lated detection approaches.

DREBIN significantly outperforms the other ap-
proaches and detects 93% of the malware samples at
a false-positive rate of 1%, corresponding to one false
alarm when installing 100 applications. The other ap-
proaches attain only a detection rate between 10%–50%
at this false-positive rate. As Kirin and RPC both con-
sider only a subset of the requested permissions, they
have obvious limitations in detecting malicious applica-
tions. Even the method by Peng et al. which considers all
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(c) Top malware families in our dataset.

Fig. 4: Detection performance of DREBIN and related approaches.

families is much larger than of other families the detection
result mainly depends on these families. To address this prob-
lem one can use the same number of samples for each family.
However, this leads to a distribution that significantly differs
from reality. Instead we evaluate the detection performance for
each of the 20 largest malware families separately. The family
names and the number of samples for each family can be found
in Table 4(c) and the detection performance of DREBIN for
each family is illustrated in Figure 4(b).

DREBIN is able to reliably detect all families with an
average accuracy of 93% at a false-positive rate of 1%. In
particular, all families show a detection rate of more than 90%,
where three of them can be identified perfectly (H, O, P). There
is only one malware family which cannot be reliably detected
by DREBIN. This family is Gappusin (R) and we examine its
low performance in the next section. It should be pointed out
that there seems to be no dependency between the size of a
malware family and its detection rate as long as the number of
samples is sufficiently high and allows the SVM to generalize
its features.

4) Detection of unknown malware families: DREBIN uses
known malware for learning its detection model. It is thus
important to assess how many samples of a family need to
be known to reliably detect this family. To study this issue,
we conduct two additional experiments where we limit the
number of samples for a particular family in the training set.
In the first experiment we provide no samples of the family,
corresponding to a totally unknown malware strain. In the
second experiment, we put 10 randomly chosen samples of the
family back into the training set, thus simulating the starting
spread of a new family.

The results of the two experiments are shown in Figure 5,
where the detection rate is shown for 0 and 10 available
samples in the training set for each family. If no samples are
available for learning, it is difficult for DREBIN to detect a
family, as no discriminative patterns can be discovered by
the SVM. However, only very few samples are necessary
to generalize the behavior of most malware families. With
only 10 samples in the training set, the average detection
performance increases by more than 25 percent. Three families
can even be detected perfectly in this setting. The reason

for this is that members of a certain families are often just
repackaged applications with slight modifications. Due to the
generalization which is done by the SVM it is therefore
possible to detect variations of a family even though only a
very small set of samples is known.

Fig. 5: Detection of unknown families.

In summary, DREBIN provides an effective detection of An-
droid malware and outperforms related detection approaches
as well as several anti-virus scanners. While DREBIN can not
spot unknown malware from the very start, only few samples
of each family are required for achieving a reliable detection.

C. Explanations

Apart from its detection performance a strength of DREBIN
lies in its ability to explain the obtained results. This allows us
to check whether the extracted features which contribute to the
detection fit to common malware characteristics. In this section
we first take a look at four popular malware families and
analyze how features with high weights allow conclusions to
be drawn about their behavior. We then inspect false positives
and false negatives of DREBIN in detail.

1) Explanation for malware families: To study the expla-
nations provided by DREBIN we consider four well-known
malware families, namely FakeInstaller, GoldDream [23], Gin-
gerMaster [22] and DroidKungFu [24]. For each sample of
these families we determine the features with the highest
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Malware family Top 5 features
Feature s Feature set Weight ws

FakeInstaller

sendSMS S7 Suspicious API Call 1.12
SEND_SMS S2 Requested permissions 0.84
android.hardware.telephony S1 Hardware components 0.57
sendTextMessage S5 Restricted API calls 0.52
READ_PHONE_STATE S2 Requested permissions 0.50

DroidKungFu

SIG_STR S4 Filtered intents 2.02
system/bin/su S7 Suspicious API calls 1.30
BATTERY_CHANGED_ACTION S4 Filtered intents 1.26
READ_PHONE_STATE S2 Requested permissions 0.54
getSubscriberId S7 Suspicious API calls 0.49

GoldDream

sendSMS S7 Suspicious API calls 1.07
lebar.gicp.net S8 Network addresses 0.93
DELETE_PACKAGES S2 Requested permission 0.58
android.provider.Telephony.SMS_RECEIVED S4 Filtered intents 0.56
getSubscriberId S7 Suspicious API calls 0.53

GingerMaster

USER_PRESENT S4 Filtered intents 0.67
getSubscriberId S7 Suspicious API calls 0.64
READ_PHONE_STATE S2 Requested permissions 0.55
system/bin/su S7 Suspicious API calls 0.44
HttpPost S7 Suspicious API calls 0.38

TABLE III: Top features for the malware families FakeInstaller, DroidKungFu, GoldDream and GingerMaster.

contribution to the classification decision and average the
results over all members of a family. The resulting top five
features for each malware family are shown in Table III. For
clarity we presents the exact features rather then the explaining
sentences introduced in Section II-D.

• FakeInstaller is currently the most widespread mal-
ware. The members of this family hide their ma-
licious code inside repackaged versions of popular
applications. During the installation process the mal-
ware sends expensive SMS messages to premium
services owned by the malware authors. Even on
the first sight, three of the extracted features indi-
cate that the malware uses SMS functionality, where
android.hardware.telephony is implicitly added
to the manifest file as soon as an application requests
permissions to use SMS functionality.

• DroidKungFu tries to exploit several vulnerabilities in
earlier Android versions to gain root access and steal
sensitive data from the device. Its intention to gain root
access is reflected by the feature system/bin/su.
The invocation of getSubscriberId() indicates
that the malware tries to access sensitive data. The two
intents BATTERY_CHANGED_ACTION and SIG_STR are
filtered by a broadcast receiver component which is
part of many DroidKungFu samples. Both intents are
used as a trigger to start a malicious service in the
background as soon as a certain event occurs, for
instance a low battery status.

• GoldDream is a Trojan which monitors an infected
device, collects sensitive data and records infor-
mation from received SMS messages. The feature
Telephony.SMS_RECEIVED directly hints us to the
reading of SMS messages. After the malware has
collected sufficient data, it sends the data to an external

server, whose hostname is second ranked in the feature
list. Furthermore, the malware is able to install and
delete packages as well as to send SMS messages,
which is also reflected in the extracted features.

• GingerMaster is also a Trojan application which is
often bundled with benign applications and tries to
gain root access, steals sensitive data and sends it to
a remote server. Similar to the DroidKungFu family
the malware starts its malicious service as soon as
it receives a BOOT_COMPLETED or USER_PRESENT
intent. Again a significant part of this behavior can
be reconstructed just by looking at the top features.

To study the contribution of the different feature sets to the
detection of malware in general, we extract the top 5 features
for all of the malware families in our dataset. The results are
presented in Table IV. Although the requested permissions
occur in the top features of all families, it is evident that
this feature set alone is not sufficient to ensure a reliable
detection. In particular, each feature set occurs at least once
in the table which clearly indicates that all sets are necessary
for the detection of Android malware.

2) False and missing detections: We finally examine be-
nign applications which are wrongly classified as malware by
DREBIN. Similar to malicious applications, most of these sam-
ples use SMS functionality and access sensitive data, which
is reflected in high weights of the corresponding features.
Moreover, these samples often show only very little benign
behavior and thus trigger false alarms. Fortunately, the ability
of DREBIN to output explainable results can help the user to
decide whether a suspicious looking functionality is indeed
malicious or needed for the intented purpose of the application.
A similar situation occurs when DREBIN classifies samples of
the Gappusin family [19] as benign. Although it is in many
cases possible to extract features which match the description
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Feature sets Malware families

A B C D E F G H I J K L M N O P Q R S T

S1 Hardware components X X X X
S2 Requested permissions X X X X X X X X X X X X X X X X X X X X
S3 App components X X X X X X X
S4 Filtered intents X X X X X
S5 Restricted API calls X X
S6 Used permissions X
S7 Suspicious API calls X X X X X X X X X X X X X X X
S8 Network addresses X X X X X X X X X X

TABLE IV: Contribution of the feature sets to the detection of malware families.

of the Gappusin family—amongst others the hostname of
the external server—there are too few malicious features to
identify the samples as malware. Gappusin mainly acts as a
downloader for further malicious applications and thus does
not exhibit common malicious functionality, such as theft of
sensitive data.

D. Run-time Performance

While the computing power of mobile devices is rapidly
increasing, it is still limited compared to regular desktop
computers. Consequently, a detection method that is supposed
to run directly on these devices has to carry out its task very
efficiently.

Fig. 6: Run-time performance of DREBIN.

To analyze the run-time of DREBIN we implement a stan-
dalone Android application that receives a learned detection
model and is able to perform the detection process directly
on the smartphone. The size of the downloaded model is only
about 280 kbytes. Using this application we measure the run-
time of DREBIN on different devices using 100 randomly
selected popular applications from the Google Play Store.
For this experiment, we choose devices which cover various
widespread hardware configurations including four smartphone
(Nexus 4, Galaxy S3, Xperia Mini Pro and Nexus 3), a tablet
(Nexus 7) and a regular desktop computer (PC).

The results are presented in Figure 6. On average, DREBIN
is able to analyze a given application in 10 seconds on the five
smartphones. Even on older models, such as the Xperia Mini
Pro, the method is able to analyze the application in less than
20 seconds on average. Overall, no analysis takes longer than
1 minute on all devices. On the desktop computer (2.26 GHz

Core 2 Duo with 4GB RAM) DREBIN achieves a remarkable
analysis performance of 750 ms per application, which enables
scanning 100,000 applications in less than a day.

Fig. 7: Detailed run-time analysis of DREBIN.

A detailed run-time analysis for the desktop computer and
the Galaxy S3 smartphone is presented in Figure 7, where
the run-time per application is plotted against the size of the
analyzed code. Surprisingly, on both devices DREBIN attains
a sublinear run-time, that is, its performance increases with
O(

p
m) in the number of analyzed bytes m. Apparently, the

number of features does not increase linearly with the code
and thus larger applications do not necessarily contain more
features to analyze.

From this evaluation, we conclude that DREBIN does not
only reliably detect malicious applications but is furthermore
capable to perform this task in a time which clearly meets
practical requirements.

IV. LIMITATIONS

The previous evaluation demonstrates the efficacy of
our method in detecting recent malware on the Android
platform. However, DREBIN cannot generally prohibit in-
fections with malicious applications, as it builds on con-
cepts of static analysis and lacks dynamic inspection. In
particular, transformation attacks that are non-detectable by
static analysis, as for example based on reflection and
bytecode encryption [see 30], can hinder an accurate de-
tection. To alleviate the absence of a dynamic analysis,
DREBIN extracts API calls related to obfuscation and load-
ing of code, such as DexClassLoader.loadClass() and
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Cipher.getInstance(). These features enable us to at least
spot the execution of hidden code—even if we cannot further
analyze it. In combinations with other features, DREBIN is still
able to identify malware despite the use of some obfuscation
techniques.

To avoid crafting detection patterns manually, we make
use machine learning for generating detection models. While
learning techniques provide a powerful tool for automatically
inferring models, they require a representative basis of data for
training. That is, the quality of the detection model of DREBIN
critically depends on the availability of representative mali-
cious and benign applications. While it is straightforward to
collect benign applications, gathering recent malware samples
requires some technical effort. Fortunately, methods for offline
analysis, such as DroidRanger [40], AppsPlayground [29] and
RiskRanker [21], might help here to automatically acquire
malware and provide the basis for updating and maintaining a
representative dataset for DREBIN over time.

Another limitation which follows from the use of ma-
chine learning is the possibility of mimicry and poisoning
attacks [e.g., 25, 27, 35]. While obfuscation strategies, such
as repackaging, code reordering or junk code insertion do
not affect DREBIN, renaming of activities and components
between the learning and detection phase may impair discrim-
inative features [30, 38]. Similarly, an attacker may succeed
in lowering the detection score of DREBIN by incorporating
benign features or fake invariants into malicious applications
[25, 27]. Although such attacks against learning techniques
cannot be ruled out in general, the thorough sanitization of
learning data [see 7] and a frequent retraining on representative
datasets can limit their impact.

V. RELATED WORK

The analysis and detection of Android malware has been a
vivid area of research in the last years. Several concepts and
techniques have been proposed to counter the growing amount
and sophistication of this malware. An overview of the current
malware landscape is provided in the studies of Felt et al. [16]
and Zhou & Jiang [39].

1) Detection using static analysis: The first approaches for
detecting Android malware have been inspired by concepts
from static program analysis. Several methods have been
proposed that statically inspect applications and disassemble
their code [e.g., 12, 13, 15, 21]. For example, the method
Kirin [13] checks the permission of applications for indications
of malicious activity. Similarly, Stowaway [15] analyzes API
calls to detect overprivileged applications and RiskRanker [21]
statically identifies applications with different security risks.
Common open-source tools for static analysis are Smali [17]
and Androguard [10], which enable dissecting the content of
applications with little effort.

Our method DREBIN is related to these approaches and
employs similar features for identifying malicious applications,
such as permissions, network addresses and API calls. How-
ever, it differs in two central aspects from previous work:
First, we abstain from crafting detection patterns manually
and instead apply machine learning to analyze information
extracted from static analysis. Second, the analysis of DREBIN

is optimized for effectivity and efficiency, which enables us to
inspect application directly on the smartphone.

2) Detection using dynamic analysis: A second branch of
research has studied the detection of Android malware at run-
time. Most notably, are the analysis system TaintDroid [11] and
DroidScope [37] that enable dynamically monitoring applica-
tions in a protected environment, where the first focuses on
taint analysis and the later enables introspection at different
layers of the platform. While both systems provide detailed
information about the behavior of applications, they are tech-
nically too involved to be deployed on smartphones and detect
malicious software directly.

As a consequence, dynamic analysis is mainly applied for
offline detection of malware, such as scanning and analyzing
large collections of Android applications. For example, the
methods DroidRanger [40], AppsPlayground [29], and Cop-
perDroid [31] have been successfully applied to study applica-
tions with malicious behavior in different Android markets. A
similar detection system called Bouncer is currently operated
by Google. Such dynamic analysis systems are suitable for
filtering malicious applications from Android markets. Due to
the openness of the Android platform, however, applications
may also be installed from other sources, such as web pages
and memory sticks, which requires detection mechanisms
operating on the smartphone.

ParanoidAndroid [28] is one of the few detection sys-
tems that employs dynamic analysis and can spot malicious
activity on the smartphone. To this end, a virtual clone of
the smartphone is run in parallel on a dedicated server and
synchronized with the activities of the device. This setting
allows for monitoring the behavior of applications on the clone
without disrupting the functionality of the real device. The
duplication of functionality, however, is involved and with
millions of smartphones in practice operating ParanoidAndroid
at large scale is technically not feasible.

3) Detection using machine learning: The difficulty of
manually crafting and updating detection patterns for Android
malware has motivated the application of machine learning.
Several methods have been proposed that analyze applications
automatically using learning methods [e.g., 2, 26, 33]. As an
example, the method of Peng et al. [26] applies probabilistic
learning methods to the permissions of applications for detect-
ing malware. Similarly, the methods Crowdroid [4], Droid-
Mat [36], Adagio [20], MAST [5], and DroidAPIMiner [1]
analyze features statically extracted from Android appli-
cations using machine learning techniques. Closest to our
work is DroidAPIMiner [1] which provides a similar detec-
tion performance to DREBIN on recent malware. However,
DroidAPIMiner builds on a k-nearest neighbor classifier that
induces a significant runtime overhead and impedes operating
the method on a smartphone. Moreover, DroidAPIMiner is
not designed to provide explanations for its detections and
therefore is opaque to the practitioner.

Overall, previous work using machine learning mainly fo-
cuses on an accurate detection of malware. Additional aspects,
such as the efficiency and the explainability of the detection,
are not considered. We address these aspects and propose a
method that provides an effective, efficient and explainable
detection of malicious applications.
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VI. CONCLUSION

Android malware is a new yet fast growing threat. Classic
defenses, such as anti-virus scanners, increasingly fail to cope
with the amount and diversity of malware in application
markets. While recent approaches, such as DroidRanger [40]
and AppPlayground [29], support filtering such applications
off these markets, they induce a run-time overhead that is
prohibitive for directly protecting smartphones. As a remedy,
we introduce DREBIN, a lightweight method for detection
of Android malware. DREBIN combines concepts from static
analysis and machine learning, which enables it to better keep
pace with malware development. Our evaluation demonstrates
the potential of this approach, where DREBIN outperforms
related approaches and identifies malicious applications with
few false alarms.

In practice, DREBIN provides two advantages for the
security of the Android platform: First, it enables efficiently
scanning large amounts of applications, such as from third-
party markets. With an average run-time of 750 ms per
application on a regular computer, it requires less than a day
to analyze 100,000 unknown applications. Second, DREBIN
can be applied directly on smartphones, where the analysis
can be triggered when new applications are downloaded to
the device. Thereby, DREBIN can protect users that install
applications from untrusted sources, such as websites and
third-party markets.

Although DREBIN effectively identifies malicious software
in our evaluation, it exhibits the inherent limitations of static
analysis. While it is able to detect indications of obfuscation
or dynamic execution, the retrieved code is not accessible by
the method. A similar setting has been successfully tackled
for the analysis of JavaScript code [see 9] and dynamically
triggering the static analysis of DREBIN whenever new code
is loaded seems like a promising direction of future work.

DATASET

To foster research in the area of malware detection and
to enable a comparison of different approaches, we make the
malicious Android applications used in our work as well as
all extracted feature sets available to other researchers under
http://user.cs.uni-goettingen.de/⇠darp/drebin.
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