
SCRUTINIZER: Towards Secure Forensics on
Compromised TrustZone

Yiming Zhang†§, Fengwei Zhang∗†B, Xiapu Luo§B, Rui Hou‡, Xuhua Ding¶,
Zhenkai Liang∥, Shoumeng Yan††B, Tao Wei††, Zhengyu He††

†Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology
∗Department of Computer Science and Engineering, Southern University of Science and Technology

§Department of Computing, The Hong Kong Polytechnic University
‡Institute of Information Engineering, Chinese Academy of Sciences

¶Singapore Management University
∥National University of Singapore

††Ant Group

Abstract—The number of vulnerabilities exploited in Arm
TrustZone systems has been increasing recently. The absence
of digital forensics tools prevents platform owners from incident
response or periodic security scans. However, the area of se-
cure forensics for compromised TrustZone remains unexplored
and presents unresolved challenges. Traditional out-of-TrustZone
forensics are inherently hindered by TrustZone protection, ren-
dering them infeasible. In-TrustZone approaches are susceptible
to attacks from privileged adversaries, undermining their secu-
rity.

To fill these gaps, we introduce SCRUTINIZER, the first
secure forensics solution for compromised TrustZone systems.
SCRUTINIZER utilizes the highest privilege domain of the recent
Arm Confidential Computing Architecture (CCA), called the
Root world, and extends it to build a protected SCRUTINIZER
Monitor. Our design proposes a protective layer in the Monitor
that decouples the memory acquisition functionality from the
Monitor and integrates it into an in-TrustZone agent. This
ensures that the agent is isolated from TrustZone systems and
helps to minimize the codebase expansion of the Root world.
Furthermore, by grafting most of the target’s page tables in
the agent, SCRUTINIZER reduces redundant translation and
mapping operations during memory acquisition, ultimately re-
ducing performance overhead. SCRUTINIZER leverages multiple
standard hardware features to enable secure forensic capabil-
ities beyond pure memory acquisition, such as memory access
traps and instruction tracing, while making them impervious to
hardware configuration tampering by the privileged adversary.
We prototype SCRUTINIZER and evaluate it using extensive
experiments. The results show that SCRUTINIZER effectively
inspects TrustZone systems while immune against privileged
adversaries.

I. INTRODUCTION

The use of Arm architecture is increasing in computing
platforms [20], [21], [30]. To protect sensitive data, there has

BThe corresponding authors.

been a growing adoption of TrustZone technology [14] in
recent years. Through the use of TrustZone, platform owners
have enabled Trusted Execution Environment (TEE) named
Secure world for security-sensitive workloads.

Unfortunately, TrustZone systems 1 are susceptible to privi-
lege escalation attacks and exploitable vulnerabilities. Recent
studies and the records in public databases [36], [46], [67]
have revealed that over a span of nearly five years, TrustZone
systems have incurred more than 200 reported CVEs, with
a majority impacting trusted apps and the trusted OS within
Secure world. Moreover, TrustZone virtualization technol-
ogy [33] has exposed potential attack surfaces. For instance,
multiple security bugs in Arm’s reference secure hypervisor
(i.e., Hafnium [16]) have been identified from the commit
database [56] due to its relatively large codebase. By exploiting
TrustZone vulnerabilities, attackers can still perform software
chain attacks to gain control over the entire system [1]–[4],
[45].

Therefore, it is imperative to demand additional security
mechanisms to inspect TrustZone systems for backend analysis
and evidence collection purposes. Digital forensic techniques,
which capture snapshots of target data such as memory and
instruction, support these functionalities [60], [86], [88].

While existing approaches [39], [47], [55], [65], [73] have
been proposed to inspect Rich Execution Environment (REE)
called Normal world in Arm architecture, none of these
techniques have been applied to target TrustZone systems.
However, applying the same methods to TrustZone systems
is highly challenging due to several factors. First, traditional
REE-based forensics are blocked by TrustZone’s isolation,
rendering them unfeasible. Second, alternative methods may
resort to deploying forensic tools inside Secure world, e.g.,
based on TrustZone virtualization. However, the TrustZone
systems (incl. secure hypervisor) are untrusted, i.e., these
forensic tools are not isolated from TrustZone systems under
software exploitation attacks; in-TrustZone adversaries can

1In this paper, we use ’TrustZone systems’ to refer to the software in Secure
world, including trusted apps, trusted OS and secure hypervisor.

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.230147
www.ndss-symposium.org

still gain full control over these forensic tools, thus rendering
them insecure. Finally, TrustZone Address Space Controller
(TZASC) [13] is usually configured to enforce memory isola-
tion. However, adversaries within Secure world can revert the
TZASC-based access permissions [45], rendering the TZASC
insufficient for protecting a forensic system.

In this paper, we address the limitations above and present
SCRUTINIZER, the first secure forensics framework for Trust-
Zone systems, even under a robust software attacker within
Secure world. To protect forensics inspection functionalities
from both the vulnerable system and privileged attackers, we
deploy SCRUTINIZER in hardware-assisted isolation contexts
to gain an advantage over the TrustZone systems. We note
that the recent hardware advancement Realm Management
Extension (RME), introduced in Arm Confidential Computing
Architecture (CCA) [12], enables the creation of a new high-
est privilege context termed Root world. Within Root world
resides a Monitor, a low-level firmware that provides isolation
from other execution environments. On pre-CCA systems, this
was difficult because the Monitor was part of Secure world,
and adversaries in a TrustZone system had privileges to tamper
with regions belonging to the Monitor in Secure world [45].

We therefore leverage RME to deploy SCRUTINIZER in
the Monitor of Root world, thereby ensuring security against
potential software exploitation attacks from the privileged OS
and hypervisor. A platform owner can connect to a command
client (e.g., based on Linux) to communicate with SCRUTI-
NIZER’s Monitor to start a forensics session of the Trust-
Zone systems. SCRUTINIZER is designed to allow only the
authorized platform owner to securely perform post-mortem
forensics or proactive security scans, ensuring that no inspec-
tion data is leaked to unauthorized entities. SCRUTINIZER
supports memory and instruction inspection, e.g., memory
acquisition and instruction tracing. Moreover, SCRUTINIZER
enables advanced features such as memory access traps that
provide notifications when specified regions of memory are
executed, written, or read. The platform owner can securely
send requests and receive results to SCRUTINIZER via a
verified end-to-end encrypted secure channel.

However, we face several key challenges to achieving
the whole process. C1: While secure memory acquisition is
possible in Root world, it could potentially lead to an undue
expansion of the codebase in the highest privilege context, thus
creating a dilemma. C2: The memory acquisition with Root
world leads to inherent complexities due to required address
translation and mapping processes. These extra operations
result in slower performance in the Root world compared
to native access. C3: Root world is not originally designed
to provide forensic features, such as memory access traps or
instruction tracing, limiting its forensic capabilities.

To overcome these challenges, (a) we devise a protective
layer in the Root world that delegates an agent to execute in
Secure world, ensuring the agent remains isolated against the
TrustZone systems (§IV-B1). We decouple the memory acqui-
sition tasks and assign them from the Monitor to the agent.
This strategy introduces a codebase debloating for the Root

world, ensuring that its size does not grow with the agent’s
code (§VI-A). (b) By deploying our agent inside the Secure
world with isolation, we propose a grafting optimization
mechanism (§IV-B2) that accesses a target’s virtual address
space by walking the present address mappings same as the
target. Section VI-C1 shows that the performance overhead
of memory acquisition is mitigated with our optimization. (c)
We propose a hardware-assisted approach that leverages the
capabilities of CCA hardware RME and combines several
standard hardware features (§II-B) to enable the memory
access traps (§IV-C) and instruction tracing (§IV-D) in the
Monitor.

Furthermore, C4: Considering that a privileged adversary
has access to the standard hardware features utilized by
SCRUTINIZER, there is a potential risk of hardware config-
uration tampering [47]. It is insecure to use existing defense
approaches [47], [64], [65] depending on the hypervisor or
TrustZone hardware (e.g., TZASC). To tackle this challenge,
(d) we devise a dedicated access control mechanism in the
Monitor to protect the hardware configuration utilized by
SCRUTINIZER (§IV-E).

We implement a prototype of SCRUTINIZER on an official
Arm Fixed Virtual Platform (FVP) [25] that supports CCA
specification. Our experiments demonstrate a comprehensive
security evaluation (§VI-B), showing that SCRUTINIZER pro-
tects forensics functionalities against potential software at-
tacks from the privileged TrustZone system. Given that CCA
hardware has not been introduced to the public market, our
performance metrics are derived from both the FVP and an
Armv8-A board port. We evaluate SCRUTINIZER performance
(§VI-C) in three concrete forensics capabilities: memory ac-
quisition, access traps and instruction tracing. Compared to
a state-of-the-art system on Arm [65], SCRUTINIZER is 20x
and 49.5% faster for the memory acquisition and access traps,
respectively. We applied SCRUTINIZER to indicative cases in
the TrustZone to demonstrate its applications (§VI-D). Our
results show that SCRUTINIZER effectively helps conduct post-
mortem forensics or active analysis for a set of attack vectors,
including stealth rootkit detection, stack memory checking and
vulnerability exploit tracing, within a TrustZone system.

We consider SCRUTINIZER as an initial step towards secure
forensics for TrustZone systems. Rather than encompassing
all existing state-of-the-art forensic capabilities, we design
SCRUTINIZER as the system foundation enabling memory and
instruction inspection of TrustZone. It is out of our scope
to deal with the application-layer issues like which memory
regions to dump and how to discern raw data for various
analysis. We expect that future work [6], [7], [40] can build
upon our foundation with modest retrofitting to achieve a more
powerful forensic engine (§VI-D).

Our main contributions are summarized as follows:
• We propose SCRUTINIZER, the first secure forensics

framework of TrustZone systems. SCRUTINIZER lever-
ages CCA hardware features with a software-hardware
co-design to inspect a compromised TrustZone system
with secure guarantees.

2

• We implement a prototype of SCRUTINIZER on the
Arm CCA platform without any hardware or ar-
chitecture modification. The prototype is released at
https://github.com/Compass-All/SCRUTINIZER.

• We perform a comprehensive evaluation of SCRUTI-
NIZER. Our results show that SCRUTINIZER effectively
applies forensics capabilities in TrustZone systems while
being immune against privileged software adversaries
with a comparable performance overhead.

II. BACKGROUND

A. TrustZone and CCA

In the Armv8-A, processors have four privilege-based ex-
ception levels: EL0 for applications, EL1 for the OS, EL2
for hypervisors, and EL3 for a secure monitor. The TrustZone
hardware extension [14] in Armv8-A establishes two physical
address spaces (PAS): Normal and Secure. While EL0-EL2
can function in either PAS from Armv8.4-A onwards (like a
trusted OS in S.EL1 and a secure hypervisor in S.EL2), EL3
exclusively operates in the Secure world.

As illustrated in Figure 1, Arm Confidential Compute Ar-
chitecture (CCA) [12] introduces a hardware feature, Realm
Management Extension (RME) [19] from Armv9.2-A. RME
extends two new security states with their respective PAS
named Realm and Root. The Realm world serves as an
additional trusted execution environment for third-party cus-
tomers and is mutually isolated from the Secure world. The
Secure and Realm worlds coexist in CCA-enabled architecture
for compatibility: TrustZone software is designed to be self-
contained whereas Realms rely on the Normal world hyper-
visor for VM-management. Notably, in the CCA, EL3 has its
own private address space within the Root world, effectively
preventing access to EL3 memory from any other PAS. The
Root world is reserved exclusively for EL3 and houses the
Monitor.

In CCA-enabled architecture, RME enforces flexible PAS
isolation at page granularity (e.g., 4KB) and integrates dy-
namic memory support into TrustZone [17]. This technology
leverages the RME to offer an architected mechanism for
assigning memory pages between the Normal and Secure PAS
during runtime. Specifically, a memory page can be dynam-
ically encoded with one of the PAS (i.e., Normal, Secure,
Realm, Root) using an in-memory Granule Protection Table
(GPT). RME introduces Granule Protection Check (GPC) to
verify if access permissions to a page align with those specified
in the GPT. Note that while this dynamic memory technology
does not modify Secure world to remain backward compatible
with existing software, potential software attacks of TrustZone
systems in CCA closely resemble those in Armv8-A [58].

B. Arm Standard Hardware Features

The Performance Monitors Unit (PMU) [23] is a feature
commonly equipped in Arm architecture. It utilizes a collec-
tion of performance counter registers to track CPU events.
Each architecture defines a set of standard events with event

RMM

MonitorRoot World

Realm
VM1

OS Kernel

App App

Hypervisor

Realm World
EL0

EL1

EL2

EL3

Realm Management Extension

Realm
VM2

H/W

VM1

Normal World

TOS

TA TA

Secure Partition Manager

Secure World

Secure
VM1

Fig. 1: Hardware platform featuring Arm CCA and TrustZone.
Realm world is used to confidential compute for 3rd party
customers. TrustZone Secure world with dynamic memory
technology is for platform owners.

numbers. When a performance counter register reaches its
capacity, it can trigger a Performance Monitor Interrupt (PMI).

The Generic Interrupt Controller (GIC) [26] serves as a
central resource to manage interrupts in systems with pro-
cessors. The GIC can enable, disable, or forward interrupts
from hardware sources. It logically comprises several main
components: the (re)distributors and CPU interfaces. The
(re)distributors aggregate all interrupts, prioritize each, and
then forward the highest priority interrupt to the CPU core.

The Embedded Trace Extension (ETE) [24] is the hardware
trace component designed for the Armv9-A processor. Serving
as a non-invasive feature, ETE allows developers to trace
instructions with a negligible performance impact. Its design
shares many similarities with the Embedded Trace Macrocell
(ETM) [29] from Armv8-A, ensuring a compatible trace
programming and decoding environment across both ETE and
ETM implementations.

As we will discuss in §IV-C, SCRUTINIZER leverages the
RME, PMU and GIC to support memory access traps and
enables instruction tracing (§IV-D) with ETE.

III. PRELIMINARIES

A. Scope of Target Platforms

We envision scenarios where platform owners deploy Trust-
Zone systems in their own computing platforms. In our case,
these platforms are equipped with CCA hardware extensions,
which will be widely available in mainstream new-generation
Armv9-A processors [12]. Typically, these platforms run
TrustZone systems in Secure world and come with standard
hardware features as discussed in §II-B. Since the TrustZone
system is potentially compromised at runtime, and the plat-
forms are usually remote and cannot be physically interacted
with, e.g., in cloud computing infrastructure [21], [30], [32],
platform owners want to perform forensic analysis on their
TrustZone system.

B. Threat Model and Assumptions

The secure forensic inspection of TrustZone systems intro-
duces a new threat model. We assume a robust model that a
potential adversary might have gained control over the Trust-
Zone systems via the chaining of privilege escalations using
exploitable CVEs. In this context, we assume the operating

3

system and the hypervisor in the Secure and Normal worlds
are not trusted. We exclude denial-of-service (DoS) attacks
in line with a standard CCA security model [11]. Lastly,
we consider that protection against side-channel attacks and
physical attacks represents a distinct challenge and is beyond
the scope.

We place our trust in the device’s hardware, which is
assumed to function as intended. We assume that we start
with a trusted secure boot that initializes the system to its
correct state. Additionally, we operate under the assumption
that firmware in the EL3 Root world is immune to attacks.
Consequently, we believe that the EL3 code has been properly
validated, and we rely on the platform owner’s accountability
to oversee the authentication of SCRUTINIZER’s usage. The
entity connected by an authorized platform owner is also
deemed trustworthy.

C. Design Goals

The overarching goal of SCRUTINIZER is to provide a
forensics foundation for memory and instruction inspection of
TrustZone systems. Specifically, SCRUTINIZER aims to fulfill
the following design requirements:

G1: Functionality. SCRUTINIZER should support essential
inspection capabilities, including memory dump and instruc-
tion collection. Additionally, SCRUTINIZER should enable se-
cure traps on memory execute/read/write for specified analysis.

G2: Isolation. SCRUTINIZER’s components and inspection
data remain protected against the vulnerable system under our
threat model.

G3: Platform compatibility. SCRUTINIZER is designed
to maintain compatibility with the underlying Arm CCA
platform. In particular, SCRUTINIZER neither relies on the
extra hardware equipment nor does it require hardware mod-
ifications.

G4: Minimal TCB. SCRUTINIZER should keep a small
Trusted Computing Base (TCB) to reduce the potential attack
surface.

Note that availability (e.g., DoS prevention) is outside
our goals. SCRUTINIZER’s detection depends on user-crafted
analysis, e.g., it is the application layer that determines the
memory addresses to read or discern the specific data from
the memory dump. We consider future work to harness on top
of SCRUTINIZER in order to achieve more powerful forensics
techniques [6], [7], [40] as discussed in §VI-D.

IV. DESIGN

A. Design Overview

We begin with a high-level overview of SCRUTINIZER,
as depicted in Figure 2. SCRUTINIZER is crafted to enable
inspection capabilities of a TrustZone system. The system
operates on a CCA-enabled platform. To securely execute
forensic mechanisms for TrustZone systems under potential
software attacks, it is imperative to have an execution context
that is protected from such privileged adversaries. Therefore,
SCRUTINIZER’s core components are positioned in the Moni-
tor of the EL3 Root world with isolation guarantees. To initiate

Root

EL3

H/WRME PMU ETE GIC

EL2

EL1

EL0
Normal SecureSecure

Memory
Acquisition

Agent (§IV-B2)

Scrutinizer Monitor

Secure Hypervisor

TOS Forwarding

Isolation Control
(§IV-B1) (§IV-E)

Memory Traps
(§IV-C)

Instruction Tracing
(§IV-D)

Client (§V-C)
E2EE

E2EE

Host

TA TA

Fig. 2: Design overview of SCRUTINIZER. The Realm world
is omitted for simplicity. The TrustZone systems in the
Secure world are the target. The platform owner queries
SCRUTINIZER’s Monitor via the client, using verified end-
to-end encrypted (E2EE) channels. The Monitor decouples
memory acquisition functionality and implants it into an
agent within the Secure world, while maintaining its isolation
from the TrustZone system. The Monitor and the agent form
SCRUTINIZER’s TCB, The Monitor encrypts the forensic
results and returns them through the client. Gray=trusted;
White=untrusted.

a SCRUTINIZER session, the platform owner uses a host on
a trusted system. The host can connect to a SCRUTINIZER-
compatible client (e.g., based on Linux) running in Normal
world via a communication interface. The Monitor acquires
certificate information from the host and authenticates it. The
platform owner then commands the client to invoke requests to
the Monitor as required for the forensic analysis. Together with
verified end-to-end encrypted (E2EE) channels, the Monitor
securely receives requests, applies requested forensics opera-
tions, and returns the results to the host despite the untrusted
client’s forwarding.
Operating procedures. SCRUTINIZER supports typical post-
mortem forensics as part of an incident response process,
e.g., being triggered by an alert from an intrusion detection
system. Beyond reactive analysis, SCRUTINIZER also supports
proactive or periodic security scans for attack detection and
analysis. This includes use cases such as scanning for malware
by collecting runtime information on memory and instructions,
with event-based triggers like memory read/write monitoring
or execution traps. To this end, we aim to enable SCRUTI-
NIZER with essential forensic features for the platform owner,
including memory acquisition (§IV-B), memory access traps
(§IV-C) and instruction tracing (§IV-D).
Design decisions. SCRUTINIZER’s Monitor utilizes CCA hard-
ware features with a software-hardware co-design to support
the aforementioned forensic capabilities, satisfying our goals
(§III-C) by addressing the previously mentioned challenges
(cf. §I).

To enable secure and efficient memory acquisition (§IV-B),
the Monitor first creates a protective layer to isolate a Secure-
world agent against TrustZone systems (§IV-B1). By dele-
gating all memory acquisition operations from the Monitor
to the agent, we reduce the expansion of the EL3 codebase.
Furthermore, by grafting most of the target’s page tables in
the agent (§IV-B2), we minimize redundant translation and
mapping operations during memory acquisition, ultimately

4

TABLE I: Access permissions enforced by RME with GPT.

PAS GPI Accessible Permission From Security States

Normal Secure Realm Root

Normal 0b1001 True True True True
Secure 0b1000 False True False True
Realm 0b1011 False False True True
Root 0b1010 False False False True
No-access 0b0000 False False False False

reducing performance overhead.
Beyond pure memory forensics, the Monitor leverages

CCA-supported RME and combines standard hardware fea-
tures, such as PMU, GIC, and ETE to support memory access
traps (§IV-C) and instruction tracing (§IV-D). Since these
hardware features are ubiquitous in Arm platforms, we ensure
platform compatibility for the forensic functions. Furthermore,
our Monitor deploys a dedicated isolation control (§IV-E) that
protects the standard hardware features utilized by SCRUTI-
NIZER, making them impervious to hardware configuration
tampering by the privileged adversary.

Note that RME provides hardware-level separation between
the EL3 Root world and other worlds, guaranteeing that SCRU-
TINIZER’s Monitor remains isolated from other high-privilege
software layers. Collectively, these features are integral in
achieving our aim of secure forensics foundation for TrustZone
systems against potentially privileged software threats.

B. Memory Acquisition

We now describe SCRUTINIZER’s memory acquisition capa-
bility, which aids in extracting TrustZone memory. Regardless
of the CPU architecture, memory acquisition is always the
prerequisite of forensics as in tools [7], [39] and litera-
ture [47], [65], [73] for Arm-platforms, and [62], [86], [88]
for x86-forensics. However, given the potential adversaries
in TrustZone systems, existing approaches [7], [39], [47],
[65], [73] are not applicable to SCRUTINIZER, as they fall
short in providing isolation assurances against a compromised
TrustZone (cf. §I).

Capturing target memory under EL3’s Monitor appears
secure due to the isolation of the Root world. However,
EL3 code cannot directly access the Secure World using
physical addresses; instead, it is constrained to use its own EL3
virtual addresses. This is due to the Granule Protection Check
(GPC) mechanism, which dictates that direct EL3 access to
Secure world using physical addresses would result in a GPC
fault [22]. These inherent complications of EL3-based memory
acquisition may introduce an unduly expanded TCB in the
Root world, which is the most privileged context (C1). Ad-
ditionally, EL3-based memory acquisition is less efficient and
lower in performance (C2). This is because inspecting target
memory under EL3 builds additional operations: translating
the TrustZone virtual addresses (VATZ) to physical addresses
(PATZ) and mapping the PATZ to EL3’s virtual address space
(VAEL3) on a per-page basis.
Solution to C1. We propose a codebase reduction strategy. Our
basic insight involves decoupling the memory acquisition tasks
from the Monitor and integrating it into a bare-metal agent.

Scrutinizer Monitor

Extract

GPTAg
Agent

Memory

Agent

Secure Hypervisor

TOS

TA TA

 Secure PASNo-access Root PAS
Agent Core with GPTAg
Other Cores with GPTM

CPU Cores

GPTM
Agent

Memory

Fig. 3: Secure memory acquisition view. Agent is loaded in
isolated Secure PAS enforced by dual-GPTs setting. GPTAg is
used by agent core. GPTM is used by other CPU cores.

As depicted in Figure 3, our strategy includes a) reserving a
segment of physical memory to establish an execution domain
within the Secure physical address spaces (PAS) and b) del-
egating a memory acquisition agent to execute in the domain
while maintaining its isolation from the TrustZone systems. To
ensure the agent’s secure execution of this strategy, we further
propose a protective layer that prevents adversarial access to
the agent’s execution domain with isolation control (§IV-B1).
Solution to C2. We deploy a grafting optimization mechanism
for the agent to directly use target’s virtual address space
(VATZ) to read, thereby eliminating the additional operations
for translation (VATZ to PATZ) and mapping (PATZ to VAEL3)
(§IV-B2).

1) Isolation Control for Agent: SCRUTINIZER’s Monitor
establishes a protective layer to ensure that both the agent’s
code and data are securely housed within the Secure PAS,
featuring memory isolation that blocks any unauthorized ac-
cess to the physical memory segments utilized by the agent.
This is achieved through EL3’s ability to configure the GPC
in conjunction with a dual-GPT setting.

Specifically, the CCA hardware feature RME enforces GPC
in collaboration with the GPT, an in-Root-world-memory
structure, to ensure memory isolation across different PAS.
Each memory page’s PAS is represented in the GPI bits of a
GPT entry, with associated access permissions delineated in
Table I. RME ensures GPC enforcement after every page table
translation. Thus, as shown in Figure 3, we mark the physical
memory frames designated for the agent as no-access in a main
GPT for the CPU cores (referred to as GPTM), preventing
OS and hypervisor access to these frames. To facilitate the
agent’s smooth execution within the intended target PAS and
to avoid GPC blocks, we prepare a second GPT (referred to as
GPTAg) exclusively for the agent’s CPU core. GPTAg maps the
agent’s memory segments to the Secure PAS. Before the agent
is scheduled, the Monitor dynamically switches to GPTAg and
flushes all TLBs for the agent core, ensuring no poisonous
mappings are introduced by potential adversaries. Further-
more, the Monitor isolates micro-architectural components by
disabling the agent’s TLB inter-core sharing, preventing an
adversary core from using agent-shared GPT entries within
the TLB that could bypass the GPC [18].

5

2) Memory Acquisition Agent: Our Monitor provides APIs
for an analyst to enter the agent for specific memory acqui-
sition tasks. During this process, the agent operates solely on
one core and suppresses all interrupts on that core. This is
achieved by adjusting the CPU interrupt flags (PSTATE.I,
PSTATE.F and PSTATE.ALLINT) to mask both standard
and non-maskable interrupts, ensuring that the execution flow
remains uninterrupted. Once the acquisition task is over, the
agent returns to the Monitor in a dormant state. We also handle
potential exceptions (e.g., crashes) by using the agent’s code of
exception vector tables combined in the agent’s memory. The
exception handler can switch to Monitor for core restoration.
The agent functions like a daemon: it remains passive most of
the time, ensuring it does not constantly occupy the CPU core
to minimize the extra overhead while no memory acquisition
is active.

The agent core runs at the privilege level of either S.EL1
or S.EL2, depending on the intended acquisition targets, e.g.,
the OS (incl. user space applications) or the hypervisor. The
agent’s address mappings are divided into two parts: local
and target. Local mappings connect the agent’s code and
data to its designated physical memory segment, while target
mappings correspond to the virtual address space of the
intended TrustZone system.
Grafting optimization of memory acquisition. To reduce
the time required for building translation operations (VATZ to
PATZ) and mapping operations (PATZ to VAAg), we propose
an optimized solution that omits the additional steps. Since
we deploy the agent to run in the secure PAS, enabling the
agent to have the capability to use the same page tables as in
TrustZone (infeasible at EL3 Root world). The page table is
a tree structure with three or four levels. We only copy the
first level page table, namely, the L0 table, and directly graft
the other levels. The L0 table contains 512 entries, with each
L0 entry indexing 512GB (4-level) or 1GB (3-level) of virtual
memory space. As shown in Figure 4, we copy the target’s L0
table to a new L0Ag table in the agent’s memory. The L0Ag

table retains the same entry values as the original L0 table, but
with execution permissions removed from the entries. Then,
the local mappings are integrated into an empty entry of the
L0Ag table with permissions. This entry points to the following
level page tables of the local mappings (pre-allocated once)
within the agent’s memory. Since the local mappings of the
agent (incl. the L0Ag table) are allocated in the agent memory,
which is inaccessible to the TrustZone systems, they are not
exposed to attackers.

During memory acquisition, SCRUTINIZER retrieves the
TTBR register value from a trapped target CPU’s context
to copy the L0 table. To trap the target and access its
CPU context, an authority can temporarily pause the target’s
execution. This pause is initiated by memory access traps
(§IV-C). By setting traps at specific locations in the target
memory determined by the authority, it causes the CPU core
running the target to generate an exception to the Monitor,
thus pausing only the analysis target. Consequently, the agent’s
MMU can walk through the present memory view mirroring

…

1
0

511

L0 L1 L2 PA

0

…

1

511

Agent TTBR
L0Ag

Target TTBR

… … …

L1 L2 PA… … …

Page mapping Grafting

Copy & the execution permissions are removed

 Target mappings
Local mappings

L1 L2 PA

Fig. 4: The example of the grafting optimization of address
mappings in the agent. (i) Target mappings are grafted by the
cloned first-level table (L0Ag). (ii) Local mappings are then
integrated into an empty entry (i.e., 511) of the L0Ag table.

that of the paused target.
Summary. Our isolation control ensures that the agent exe-
cutes within the same Secure PAS yet remains isolated from
potentially compromised TrustZone systems. The optimization
mechanism enables efficient access by the agent to the tar-
get memory (§VI-C1) without building additional operations
(VATZ → PATZ → VAAg). Furthermore, delegating memory
acquisition tasks to the agent helps reduce the expanded
codebase of the EL3 Root world and ensures that the Root
world’s TCB size does not grow with the agent’s code (§VI-A).

C. Memory Access Traps

Memory access trap is an essential forensics feature [7], [39]
for backend-side analysis. SCRUTINIZER which focuses on
forensics, enables the traps to monitor memory execute/read-
/write accesses (X/R/W) to the Secure world. That way, the
analyst can set checkpoints within the TrustZone system at a
specified address. Note that this functionality is not designed
for single-stepping debugging [65].

In our threat model (§III-B), adversaries within TrustZone
systems possess higher privileges, which presents new chal-
lenges in securely implementing memory access traps. First,
since the secure hypervisor cannot be trusted, we cannot
apply existing memory monitoring methods [39], [47] that
rely on stage-2 nested page tables (NPTs) within the secure
hypervisor. Second, the Arm processor provides a standard
hardware breakpoint/watchpoint mechanism [41], capable of
generating breakpoint exceptions for such trap functionality.
However, due to the inherent design of the Arm architecture,
the highest exception level at which a breakpoint exception
can be trapped is EL2 (not routable to EL3). Unfortunately,
this level is also where a potential hypervisor adversary could
reside, thereby restricting the capability to support a memory
access trap at the EL3 Root world (C3).
Solution to C3. Recall that when RME-enforced GPC verifi-
cation fails, a Granule Protection Fault (GPF) is generated to
prevent unauthorized access. This fault can be rerouted to the
EL3 Root world. Only the EL3 code has access permission
to the control registers pertaining to GPT and GPC, and

6

notably, the GPT is situated within the Root world. Taking
these observations into account, we utilize RME as a hardware
foundation to implement secure memory access traps within
the EL3 Root world Monitor. Our design avoids any hardware
modifications to maintain platform compatibility.
Memory execution traps. The basic insight is to employ
the GPTM to designate the specific instruction address as no-
access. This allows us to trap the target to the Monitor as soon
as the instruction gets executed (referred to as X). However,
a notable challenge here is that the smallest possible granule
protection information (GPI) of GPT corresponds to a page,
typically 4KB. This granularity is too coarse for instruction-
level traps. GPT also cannot support page-like permissions,
i.e., execution-only or read-only. To tackle this challenge, we
introduce an enhanced method to facilitate finer monitoring
granularity with the help of PMU and GIC.

Figure 5 shows a simple workflow on an execution trap.
1 When an analyst sets a trap address via the Monitor’s
API, the Monitor logs its address and marks it as no-access
in the associated GPTM entry. If a target instruction within
the page is executed, a GPF is triggered and subsequently
routed to the Monitor for further processing. 2 Within the
GPF handler, if the exception instruction address mismatches
the target address yet resides on the same page, the Monitor
permits instruction execution on the page by unsetting its
no-access status in the GPTM. The Monitor then activates
PMU to control the execution: To halt the target’s execution
at the instruction level, the Monitor configures a PMU event
counter register to count the PMU_CPU_CYCLES event, which
indicates the most granular interception of each instruction
execution [65]. The value set for the event counter register
before enabling the PMU is 0xffffffff. Consequently, this
register will immediately overflow after the target’s execution,
triggering a Performance Monitor Interrupt (PMI) to trap the
target. Note that the Monitor configures the GIC to ensure
the PMI is routed to the EL3. Since the GIC inherently has
the capability to invoke EL3-handled interrupts via Group
interrupts (specifically Group 0), the Monitor sets the PMI’s
ID under GIC Group 0 in advance. The Monitor also adjusts
the GIC priority register to assign the highest priority to the
PMI, ensuring that the CPU promptly responds to the PMI
without delay.

In the Monitor, 3 if the PMI handler identifies a match
between the executing instruction’s address and the target
address, indicating that the monitoring has been hit, the
Monitor informs the analyst and waits for further operations
(e.g., inspecting the contents of memory or CPU registers)
while keeping the target paused. 4 If the target’s instruction
address is not executed within the target’s page, the Monitor
refrains from interrupting the target’s execution. However, it
reinstates the no-access permission on the GPTM entry. This
ensures that any subsequent instruction executions from that
particular page will be intercepted.
Memory read/write traps. The memory read/write monitor-
ing is achieved with a similar strategy, where the Monitor
marks the GPTM entry corresponding to a specified address

mov x0，x2

add x0，sp，#0

…

0x2000

Target PAS No-access

0x2004

0x3000

① Unset Access;
PMI Deactived

② Enable Access;
PMI-trap Actived

Monitoring Address

④ Re-unset Access;
 PMI Deactived

③ Enable Access;
Target Address Match

Program Counter

add x0，sp，#0

…

0x2004

0x2008

0x3000

…

0x2008

mov x0，x2

…
0x2000

… …

add x0，sp，#0

…

0x2004

0x2008

0x3000

mov x0，x2

…
0x2000

…

mov x0，x2

add x0，sp，#0

…

0x2000

0x2004

0x3000

…

0x2008

…

mov x1，x0 mov x1，x0 mov x1，x0 mov x1，x0

Fig. 5: An example of GPT-based execution traps with PMI.

as no-access. In our Monitor’s GPF handler, the EC and ISS
bits of the ESR_EL3 register are utilized to discern the target’s
memory R/W access. For a GPF caused by R/W accesses, we
use the ELR_EL3 register to identify the instruction address
that initiated the GPF. The FAR_EL3 register is used to pin-
point the address of the accessed memory. Once trap handling
is complete or if no match is found, the Monitor modifies
the GPTM to allow R/W access and then enables the same
PMU setting discussed above. Consequently, the preceding
R/W operation can be executed, which in turn triggers an EL3-
handled PMI, pausing the subsequent execution of the target.
Upon receiving the PMI, the Monitor deactivates the PMU and
subsequently reapplies the no-access designation on the page
through the GPTM. This ensures that all subsequent accesses
to the specified trap will initiate the desired trigger.

D. Instruction Tracing

Control flow analysis is essential for understanding a target’s
execution in digital forensics or proactive security scans [60],
[65]. This process of capturing the control flow is commonly
known as instruction tracing [24]. SCRUTINIZER’s Monitor
leverages the hardware feature ETE introduced in Armv9-
A to support instruction tracing. ETE offers similar tracing
capabilities with ETM on Armv8-A. ETE supports trace for
Normal, Secure, and Realm PAS with different exception
levels, including EL0-EL2. This gives analysts a detailed
insight into the control flow of targets across different privilege
levels.

To allow for specific content capture during target execution,
the Monitor provides an API that configures ETE’s trace
functionality, letting analysts focus on the memory address
range or exception level of particular interest via ETE’s filters.
In Armv9-A, the newly introduced Trace Buffer Extension
(TRBE) [37] has the capability to store captured ETE trace
data in system memory. However, it cannot protect this trace
data from tampering. A compromised TrustZone can also
access the TRBE-enabled memory buffer, as the buffer must
be configured to have the same PAS (e.g., Secure) as the
target [24]. To protect the trace data, we are able to use an
alternative solution that configures ETE to send traces to a
dedicated on-chip buffer (e.g., ETB [28]). Reading data from
the ETB can only be done through a RRD register access.
All these trace-related registers are further secured to prevent
access by privileged adversaries (§IV-E), ensuring that only
the Monitor can access them. Note that since the Monitor’s

7

memory is in the Root world, neither the OS nor the hypervisor
can access the trace data.

E. Isolation Control for Hardware Access

Recall that SCRUTINIZER uses multiple standard hardware
features (i.e., PMU, GIC, and ETE) to implement its func-
tionalities. However, a high-privilege adversary within a com-
promised TrustZone can also access these hardware features,
potentially causing hardware configuration tampering [47].
Unfortunately, it is insecure to rely on existing defense ap-
proaches [47], [64], [65] within our threat model. We can
neither use NPTs to isolate memory-mapped accesses of these
hardware resources from an untrusted TrustZone hypervisor,
nor utilize TrustZone hardware features (e.g., TZASC) to
allocate secure access for these hardware resources against
in-TrustZone attackers (C4).
Solution to C4. To address the challenge, we carefully classify
the access paths of PMU, GIC, and ETE within the CCA
platform and propose a dedicated isolation control mechanism.
According to the Arm manuals [22], [24], [26], PMU can
be accessed via system registers and memory-mapped I/O
(MMIO). In contrast, ETE can only be accessed through sys-
tem registers, as memory-mapped access has been deprecated,
while the GIC-distributor is accessible solely via MMIO.
Consequently, we deploy two distinct protection solutions to
guard against underlying adversaries.
System registers access control. System registers are accessi-
ble via mrs and msr instructions. We achieve exclusive Root
world access to the PMU and ETE system registers using
the Debugv8p4 [22] hardware feature. Debugv8p4 enables
configuration of fields in the MDCR_EL3 and CPTR_EL3
registers to control system register access. It supports trapping
access attempts from lower exception levels (i.e., EL0-EL2) to
all system registers related to PMU and ETE, redirecting them
to EL3. Consequently, SCRUTINIZER’s Monitor configures the
TPM bit of the MDCR_EL3 register and the TTA bit of the
CPTR_EL3 register to ensure that only the Monitor can access
PMU and ETE system registers during forensics activation.
Memory-mapped accesses control. The configuration, state,
and data of the PMU and GIC-distributor can be accessed via
memory-mapped interfaces. To prevent MMIO-based tamper-
ing of PMU and GIC configurations by privileged adversaries,
SCRUTINIZER’s Monitor shields the fixed memory-mapped
addresses of the GIC-distributor and PMU by adjusting the
GPTM, thereby denying unauthorized access to the hardware.
Specifically, during the activation of a forensic session, the
memory regions for the GIC-distributor registers and the
PMU-related registers are designated as Root PAS. This pro-
tection ensures that any adversary’s MMIO-based attempt to
tamper with the GIC-distributor and PMU will be blocked.
Stability. Other software might directly access protected hard-
ware (e.g., GIC-distributor) during the forensics procedure,
potentially triggering a synchronous abort. To further enhance
stability, the Monitor’s abort handler checks and emulates
access on behalf of the software if the access does not influ-
ence forensics configuration (e.g., PMI-related GIC registers

discussed in §IV-C). Note that we observed that such conflicts
rarely occur. For example, existing software such as Linux
accesses the GIC-MMIO registers only during boot and not
afterward. Since the hardware access control is only enabled
post-boot during forensics, it does not conflict with existing
software in our experiments.

V. IMPLEMENTATION

As Arm CCA is released recently, there is a lack of off-the-
shelf CCA platforms. We therefore implement a SCRUTINIZER
prototype on official Arm FVP Base RevC-2xAEMvA [25]
with the support of RME, PMU, GIC and ETE. The FVP
supports accurate simulation of the latest CCA hardware
features and has been used in prior studies [48], [72], [85].
We employ the Arm CCA reference software stacks [42] in
the FVP, including Linux v6.2 in the Normal world, OP-TEE
v3.21 [34] and Hafinum v2.9 [56] as TrustZone systems in
the Secure world, TF-RMM v0.2 [35] in the Realm world,
and Trusted Firmware-A (TF-A) v2.8 [38] as the EL3 Monitor
in the Root world. These are chosen because they are widely
used real-world software and have official support from Arm.

A. TF-A Integration

In the FVP, we reserve a physical memory region from
0xf8000000 to 0xfc000000 (64MB) for SCRUTINIZER’s
implementation. This is the default settings for our experi-
ments, and the memory size can be adjusted as required. The
initial 32MB of this space stores the ETE trace data, while
the subsequent 8MB is designated for the memory acquisition
agent and its associated address mappings. This is followed
by 20MB reserved for memory acquisition data transfer, with
the final 4MB set aside for the second GPT (GPTAg).

We extend BL31 of TF-A to implement components of
the SCRUTINIZER’s Monitor. We map the reserved memory
region for the Monitor access at boot time. Of this, the
agent-related memory (28MB) belongs to the Secure PAS
and is enforced isolation by dual-GPTs setting, while the
remaining reserved memory (36MB) is assigned to the Root
PAS. During BL31 initialization, the agent code is loaded
into the designated physical memory frames by the Monitor.
Additionally, we extend the Monitor to schedule the agent for
memory acquisition. Note that TF-A is uniquely responsible
for managing operations requiring the highest level of priv-
ilege, such as enforcing GPT-based isolation and maintain-
ing CPU context between different executions. We therefore
leverage existing parts of the original TF-A code to simplify
implementation, including reusing the GPT management li-
brary (lib/gpt) for GPTAg creation and GPT manipulations,
as well as context switching to enter the agent. We enable
both MMU and SMMU GPCs via configuring GPCCR_EL3
and SMMU_ROOT_GPT_BASE_CFG registers, while GPTs
are deployed to MMU and SMMU via GPTBR_EL3 and
SMMU_ROOT_GPT_BASE registers. Together with the decou-
pling optimization that delegates the memory acquisition agent
to the Secure world, our implementation does not significantly
increase the EL3 Monitor’s codebase (See §VI-A).

8

B. Memory Acquisition Operations

Virtual memory space access. Based on the target Trust-
Zone systems running on the FVP, we implement specialized
construction of address mappings in the memory acquisition
agent for virtual memory space access. This is tailored for
the OP-TEE (incl. trusted apps and trusted OS) and Hafnium
hypervisor, respectively. Note that this process of constructing
the mappings is also compatible with other TrustZone systems.

In the OP-TEE software, since all trusted apps and the
trusted OS share the same page tables and execute within
an assigned memory layout, any specific trusted app or the
OS itself can be targeted as a same OP-TEE instance. Thus,
when focusing on the OP-TEE target, we can further op-
timize the allocation of stage-1 address mappings for the
agent. Specifically, OP-TEE’s apps and OS utilize a stage-
1 translation table configured in the TTBR0_EL1 register,
with TTBR1_EL1 remaining unused. Therefore, instead of
replicating OP-TEE’s stage-1 L0 table for the agent, we can
align the agent core’s TTBR0_EL1 register with the OP-TEE’s
TTBR0_EL1 value to establish stage-1 target mappings. The
unused TTBR1_EL1 register is set to point to the agent’s
own stage-1 local mappings. This strategy helps reduce the
overhead of copying the stage-1 L0 table.

Regarding stage-2 address mappings with only one VSTTBR
register, as discussed in §IV-B2, the L0 table specific to OP-
TEE’s stage-2 translation tables is copied for the agent core,
and the remaining lower-level tables are reused. Execution per-
missions are removed from the cloned stage-2 L0 table, which
is then combined with the agent’s stage-2 local mappings.

When targeting the Hafnium hypervisor, the approach for
managing the agent’s address mappings for Hafnium mirrors
that used for OP-TEE’s stage-2 address mappings discussed
above, with all target mapping entries in the cloned L0 table
from Hafnium’s TTBR_EL2 set to no-execute. Additionally,
local mappings specific to the agent’s EL2 execution are
integrated.
Full physical memory dumping. Note that SCRUTINIZER’s
memory acquisition not only allows for accessing a target’s
virtual address space, but also provides a basic memory
access operation to dump full contents of physical memory for
client-side offline analysis. In this mode, instead of grafting
target mappings, we implement physical memory access by
establishing flat mappings of all physical memory regions in
both the Normal and Secure worlds as indicated by the GPT.

C. Authorized Secure Communication

Client. We implement a command application and a Linux
kernel driver to serve as a SCRUTINIZER-compatible client on
top of Linux. This client facilitates communication between
SCRUTINIZER’s Monitor and the platform owner. The Linux
kernel driver is registered as a channel device and provides
ioctl interfaces for the command application to send re-
quests. It uses the smc instruction to invoke the Monitor’s
forensic capabilities. The Monitor communicates with the
channel device using a shared buffer to transmit encrypted
results over verified end-to-end encrypted channels.

Authentication. To ensure the platform owner exclusively ac-
cesses the SCRUTINIZER forensics, we implement a certificate-
based authentication in the Monitor. We presuppose the plat-
form owner installs a public key infrastructure (PKI) and
identification signature into the Monitor at the Root world.
The platform owner encrypts a certificate (comprising an AES
key and identification signature) using the public key. Upon
receiving this encrypted certificate, the authentication module
in the Monitor decrypts it using the corresponding private key.
A match in identification signatures confirms the certificate’s
validity.
End-to-end encrypted channels. The PKI and crypto support
are based on other works [48], [51]. After successful au-
thentication, the Monitor establishes an end-to-end encrypted
(E2EE) channel with the platform owner. Specifically, using
the AES key from the authenticated certificate, data is en-
crypted for transfer. The Monitor can decrypt the messages or
encrypt forensic results for the platform owner. That way, the
communication is protected against attackers even though it
passes through the untrusted client.

VI. EVALUATION

In this section, we evaluate SCRUTINIZER by answering the
following research questions:

• RQ1: What is the additional code size of SCRUTINIZER?
(§VI-A)

• RQ2: Can SCRUTINIZER defend against privileged ad-
versaries? (§VI-B)

• RQ3: What is the performance overhead of SCRUTI-
NIZER’s forensics capabilities? (§VI-C)

• RQ4: Can SCRUTINIZER be applied to inspect TrustZone
systems? (§VI-D)

A. RQ1: Code Size of SCRUTINIZER

We run the cloc tool [15] to measure the code size
introduced by SCRUTINIZER. SCRUTINIZER adds 942 lines of
code (LoC) additions to TF-A v2.8. Additionally, 723 LoC are
dedicated to supporting the memory acquisition agent. In total,
SCRUTINIZER comprises approximately 1.6K LoC TCB. As
the agent is not included in the Root world, our optimization
mechanism has effectively reduced the introduced code size
for Root world by around 43%.

Note that SCRUTINIZER’s decoupling design ensures the
Root world’s code size does not grow with the agent’s
code. The agent in our prototype is primitive. However, as
a forensics foundation, it can be continuously programmed
with tens of thousands of lines of code to expand forensics
functions while preventing the Root world’s TCB from bloat-
ing, minimizing the TCB we introduced in the Root world.
Furthermore, although SCRUTINIZER extends the TCB of the
EL3 Root world, our design approach ensures only a minimal
increase in the EL3 codebase (0.9K). This increase remains
several orders of magnitude smaller than the original TF-A’s
435K LoC (0.2%).

9

TABLE II: Two types of adversary with the corresponding
attack scenarios and the defense mechanism in SCRUTINIZER.
① indicates the GPT-based memory isolation on CPU and
peripheral access. ② indicates the hardware-enforced isolation
of Root world. ③ indicates the TLB maintenance. ④ indicates
the hardware access control and EL3 checks. ⑤ indicates
the EL3 authentication. ⑥ indicates the end-to-end encrypted
channel establishment.

Adversary Type Attack Scenarios Defense

Untrusted Software

Unauthorized memory access and manipulation ①②
GPC circumvention ②③
Hardware configuration tampering ①④
Illegal SCRUTINIZER session ⑤
Impersonated communication ⑥

Peripherals Malicious DMA ①②

B. RQ2: Security of SCRUTINIZER

1) Security Analysis: In this section, we detail how SCRU-
TINIZER provides security assurances for forensic capabilities
against privileged adversaries from compromised TrustZone
systems. Based on our defined threat model (§III-B), we
evaluate a comprehensive set of attacks against our prototype.
Specifically, we make and analyze a list of attack scenarios.
Table II presents these scenarios along with corresponding
solutions.
Unauthorized memory access and manipulation. An adver-
sary might attempt direct access to SCRUTINIZER-related code
and data stored in memory. However, since SCRUTINIZER’s
Monitor resides within the Root world, it is protected by the
isolation enforced by the GPC. Even privileged adversaries
within TrustZone systems cannot bypass this memory access
control. Furthermore, an adversary might try to tamper with
the agent’s code and data within the Secure world. Under
SCRUTINIZER’s dual-GPT setting (§IV-B1), the GPT desig-
nated for the OS/hypervisor does not grant permission to the
physical memory frames occupied by the agent. Thus, the
adversary cannot compromise the agent’s memory.
GPC circumvention. To undermine SCRUTINIZER’s security,
an adversary might try to circumvent the GPC to maliciously
access SCRUTINIZER’s TCB. However, such attempts are
thwarted since adversaries cannot access GPC-related registers
due to their lack of the Root privilege. This means they
cannot disable the GPC or substitute a genuine GPT with a
malicious counterpart. Additionally, by housing GPT within
the Root world memory, we ensure adversaries cannot alter
them to revoke the isolation permissions. While there might
be concerns that an adversary could exploit the TLB GPC
entries to bypass our isolation, we disable TLB sharing across
the agent core and invalidate the TLB entries when the GPT is
modified. Adversaries cannot tamper with these TLB entries
as the Arm architecture does not support such modifications.
Hardware configuration tampering. The adversary may
tamper with the PMU, GIC, and ETE hardware configurations
to undermine the SCRUTINIZER’s functionalities. To defend
against this attack, SCRUTINIZER ensures the protection of
the hardware system registers and memory-mapped interfaces.
Overall, SCRUTINIZER thwarts attempts at malicious hardware

configuration tampering through the use of GPC protection and
system register traps.
Illegal SCRUTINIZER session. The adversary may misuse
SCRUTINIZER functionalities within the system. However,
they would be thwarted by the necessary authentication step
before initiating a forensics session. Only authorized entities,
like platform owners, have access to SCRUTINIZER’s forensics
services. Note that adversaries cannot modify the identification
signature securely stored in the Root world.
Impersonated communication. The adversary may attempt to
impersonate the communication channel between the SCRU-
TINIZER’s Monitor and the analyst, aiming to compromise
the channel’s integrity through malicious queries or results.
Although the result forwarding is offloaded to the untrusted
client, attackers cannot compromise the integrity and confiden-
tiality of encrypted communication results. Since we install a
PKI in the Monitor, this allows the Monitor to authenticate its
owner and decrypt the exchanged keys, preventing attackers
from impersonating the Monitor or leaking the secret key. The
exchanged keys are securely stored in the Root to defend
against unauthorized access. By ensuring that all communi-
cations and commands are encrypted and authenticated using
the certificates, we can guarantee that the interaction between
the Monitor and the analyst will not be impersonated by an
adversary.
Malicious DMA. The adversary may exploit other secure
peripherals (e.g., sensors) to conduct malicious DMA attacks
on the agent execution environment. However, SCRUTINIZER
also adapts the GPTM configuration to the SMMU GPC, thus
restricting peripherals’ DMA to the agent regions.

2) Evaluation of Practical Attacks: We evaluated SCRUTI-
NIZER’s effectiveness against a compromised TrustZone by
analyzing practical CVEs collected from prior works [45],
[46], [85]. We surveyed a total of 56 CVEs (Table III) that
fit our threat model, which simulates a powerful local attacker
who has gained control over TrustZone systems with the intent
to compromise SCRUTINIZER. These attackers could poten-
tially execute arbitrary code in the Secure and Normal world’s
privileged software. However, SCRUTINIZER’s integrity and
confidentiality remain protected even if attackers control this
privileged software. This is because SCRUTINIZER leverages
RME-based hardware isolation to protect its components’ code
and data as well as the used hardware resources against
the privileged software, while the malicious software cannot
bypass these protections (GPC and dual-GPT settings) without
the Root privilege.

C. RQ3: Performance of SCRUTINIZER

For our performance evaluation, we focus on three specific
forensic capabilities with SCRUTINIZER: memory acquisition,
memory access traps and instruction tracing. Each of these
will be elaborated upon subsequently.
Experimental setup. While the FVP provides instruction-
accurate simulation, indicating the precise number of in-
structions an Arm core executes for given operations, it is

10

TABLE III: CVEs that are surveyed for practical attacks

Group Vulnerability (CVE-*)

Trusted App/OS

2014-9949, 2015-8995, 2015-4422, 2015-6639,
2014-9936, 2014-9937, 2014-9932, 2014-9935,
2015-8996, 2015-8997, 2014-9945, 2014-9948,
2017-14913, 2017-18293, 2015-9007, 2016-2432,
2016-10297, 2017-6289, 2017-18297, 2018-5866,
2018-5210, 2018-5885, 2015-8998, 2015-9005

Trusted OS

2014-9979, 2015-9112, 2015-9113, 2015-9198,
2015-9108, 2015-8999, 2015-9072, 2015-9073,
2015-9070, 2015-9071, 2016-2431, 2016-10432,
2016-10238, 2016-10432, 2017-6290, 2017-6292,
2015-9200, 2016-2431, 2018-3588, 2018-5870,
2017-11011, 2017-14912, 2017-17176, 2017-18071

Hypervisor 2018-18021, 2018-10901, 2020-3993, 2021-22543,
2019-6974, 2019-14821, 2019-7222, 2020-36313

not cycle-accurate [25]. This means it cannot provide real-
time performance. At the time of writing, no commercially
available hardware supports RME features. As the best effort,
for performance evaluations related to memory acquisition and
instruction tracing, we assess the costs on a real Arm Juno
R2 board with dual-core Cortex-A72. We port SCRUTINIZER
initially implemented for FVP to run on this board. Emulating
the GPT performance on our board, a standard procedure
as seen in other works [48], [72], [85], consists of several
steps. (i) Register analogs. we replace the GPT registers
with idle EL3 registers for operations. (ii) GPT analogs. We
faithfully mimic all GPT operations, as the GPT is an in-
memory structure. (iii) GPT-specific instruction analogs. We
substitute RME-specific instructions (i.e., those invalidating
GPT TLBs) to ensure compatibility with Armv8-A. Given
that the processors lack ETE support, a feature introduced in
Armv9-A, we approximate the overhead of instruction tracing
using a comparable hardware feature ETMv4 [27] in the
Armv8-A Juno board. The other operations are the same as
those on the FVP. The processors run at the maximal frequency
1.2GHz. Additionally, since SCRUTINIZER’s memory access
traps rely on real-GPC efforts, we measure the performance
overhead of the memory access traps using instruction count
measurements from the FVP as an approximate metric [72].
We perform experiments 50 times. Note that we do not claim
that performance numbers derived from both the FVP and the
board represent real Arm CCA processors.
Comparison with state-of-the-art. To show the comparison
to state-of-the-art, we also evaluate the performance between
SCRUTINIZER and NINJA [65] in terms of memory acquisition
(§VI-C1) and the memory access traps (§VI-C2), respectively.
To the best of our knowledge, NINJA is the most related state-
of-the-art tool based on the EL3 secure monitor in Armv8-A. It
provides a set of inspection features aimed at REE systems but
is not designed for a compromised TrustZone. NINJA supports
memory read at EL3, serving as a comparable benchmark for
EL3-based memory acquisition performance. Additionally, it
simulates access traps by checking the current PC under an
interrupt-based single stepping.

Since NINJA is not open-source and there is no available
PoC prototype, we make our best efforts to reimplement
it for a fair comparison. We follow NINJA’s memory read

implementation of accessing physical memory, which involves
mapping its own EL3 virtual addresses (VAs) to target physical
addresses (PAs). We also follow NINJA’s optimization using
Address Translation (AT) instructions to translate target VAs
in order to obtain the corresponding target PAs. Both SCRUTI-
NIZER and NINJA use the same PMU counter event (§IV-C) to
generate interrupt in their memory access traps. We integrated
NINJA with the Juno board and FVP, respectively.

1) Performance of Memory Acquisition: For the perfor-
mance measurement, we use Performance Monitors Cycle
Count Register (PMCCNTR) to count the CPU cycles on our
Arm Juno board. The processors lack S.EL2 support. There-
fore, we modified the agent to target kernel and hypervisor
in the Normal world. During device boot time, it takes a one-
time cost of 419 µs to setup the acquisition agent environment.
To further measure the time required for the agent’s entry and
exit, we use PMCCNTR to count the duration for an empty
acquisition, which entails zero byte fetch from the target.
This provides an overhead measurement exclusive of the agent
environment setup. SCRUTINIZER’s EL3 Monitor takes a cost
of 3.3 µs to enter the agent and pass the control to it, including
the main overhead for context switch, GPT configuration, and
TLB/cache flushing. Later, it takes about 1.8 µs to exit and
switch to EL3. Thus, a memory acquisition session costs 5.1 µs
excluding memory acquisition time.
Memory acquisition speed. To study performance of mem-
ory acquisition, our experiment involves different buffer size
access in the kernel and hypervisor, respectively. To show the
efforts of the SCRUTINIZER’s acquisition, we also evaluate
the state-of-the-art NINJA employing EL3-based access. The
vanilla is the native access inside the target. Before each
memory experiment, we flushed the TLB and invalidated the
cache.

Table IV presents the comparative results. SCRUTINIZER
shows an average overhead of 1.6% over vanilla performance
in the kernel. For hypervisor access, SCRUTINIZER introduces
an average overhead of 1.9% relative to native. On the other
hand, NINJA’s average overheads are markedly higher, at
20.3x and 20.5x for the kernel and hypervisor, respectively,
when compared to vanilla performance. These outcomes arise
because NINJA’s EL3-based access involves operations map-
ping its own VAs to target PAs (PA to VAEL3). AT instructions
still involve per-page address translation operations (target VAs
to target PAs) and cannot optimize the mapping operations
(PA to VAEL3). In contrast, SCRUTINIZER grafts most of the
target mappings to optimize the performance without building
additional operations (VA → PA → VAEL3). SCRUTINIZER’s
agent directly uses target VAs to read, facilitating memory
references at high speed. Consequently, SCRUTINIZER incurs
a smaller overhead than NINJA.
Summary. SCRUTINIZER incurs an average overhead of
1.75%, which is notably 20x less than NINJA when compared
to native performance. These results illustrate that SCRUTI-
NIZER’s memory acquisition is more efficient than EL3 Root
world access.

11

TABLE IV: Acquisition performance comparison in time cost with different memory size.

of Size Kernel Hypervisor
Vanilla SCRUTINIZER NINJA Vanilla SCRUTINIZER NINJA

4KB 1.63 µs 4.90 µs 27.90 µs 1.60 µs 3.65 µs 27.88 µs
256KB 77.20 µs 82.60 µs 1.76 ms 77.41 µs 81.72 µs 1.76 ms
512KB 142.80 µs 146.20 µs 3.52 ms 135.12 µs 144.80 µs 3.52 ms

1MB 326.60 µs 334.20 µs 7.05 ms 323.61 µs 333.11 µs 7.05 ms
4MB 1.20 ms 1.25 ms 28.21 ms 1.21 ms 1.24 ms 28.20 ms

16MB 5.46 ms 5.51 ms 112.81 ms 5.38 ms 5.46 ms 112.80 ms

Aes

Acip
her

Hotp

Random
105

106

107

108

109

of

 in
st

ru
ct

io
ns

NINJA SCRUTINIZER

Fig. 6: Overhead of SCRUTINIZER memory access traps.

2) Performance of Memory Access Traps: We measure the
performance of SCRUTINIZER’s memory access traps based
on four real-world trusted apps (TAs) running on OP-TEE,
which have been used in previous works [53], [77]. These
benchmarks were chosen because they encompass a wide
range of arithmetic-intensive workloads developed for Trust-
Zone, making them ideal for evaluating CPU performance.
For the evaluation, we set a trap on the commonly in-
volved destroy_context function within OP-TEE, check-
ing whether the TA execution had ended and if the x0 register
contains a specific result. As a performance metric, we count
the number of execution instructions on the FVP from the
TA start to the trap was checked. We use the performance of
NINJA’s trap as a baseline.
Results. As shown in Figure 6, SCRUTINIZER outperforms
NINJA by reducing average overhead by 49.5%. This is
because SCRUTINIZER’s trap exceptions are triggered only
when the target executes within the monitored memory page,
while NINJA continuously intercepts the target’s execution to
check each instruction and identify whether a trap is hit.

3) Performance of Instruction Tracing: We use Nbench [5]
to measure the system slowdown caused by SCRUTINIZER’s
instruction tracing. The NBench is commonly used to measure
the performance of CPU intensive operations [51], [78] and the
benchmarks are single-threaded in nature. For our performance
experiment, we port Nbench applications to run as dynamic
TAs within the OP-TEE. The SCRUTINIZER’s instruction
tracing is implemented by leveraging ETMv4 on the Arm
Juno board. SCRUTINIZER traces all of the NBench benchmark
code addresses using ETM. Note that SCRUTINIZER does not
dedicate a core when no memory acquisition is active, ensuring
the memory acquisition agent stays dormant most of the time.
Therefore, the agent does not occupy a core during the NBench
experiment.
Results. As illustrated in Figure 7, the experimental results

Numeric sort
String sort

Bitfield FP

emulation Idea
Huffman

Neural net
Lu

decomposition

0.96

0.98

1.00

1.02

N
or

m
al

iz
ed

 o
ve

rh
ea

d Vanilla SCRUTINIZER

Fig. 7: Overhead of SCRUTINIZER enabling instruction tracing
on NBench benchmarks.

indicate that SCRUTINIZER instruction tracing incurs a neg-
ligible overhead of less than 0.2%. We estimate that Arm
processors equipped with ETE will perform comparably to
those with ETM.

D. RQ4: Applications of SCRUTINIZER

SCRUTINIZER serves as the forensics foundation for captur-
ing snapshots and can be used for both post-mortem forensics
and active analysis. It is not challenging to retrofit existing
forensic tools [6], [7], [40] that focus on high-level analysis
to create a more powerful forensics engine. We use the popular
open-source memory forensics analysis tool, Volatility [40], to
demonstrate how to integrate applications on top of SCRUTI-
NIZER. Specifically, we use SCRUTINIZER to capture the full
system memory contents and then adapt the memory dump
for use with Volatility. By retrofitting the Volatility toolkit,
SCRUTINIZER can support a variety of plugins to discern raw
data for various structure reconstructions [10], check which
processes were running on the system [9], or find hidden and
injected code [8].

We use a broader set of attack vectors across TrustZone
to evaluate SCRUTINIZER’s post-mortem forensics and ac-
tive analysis capabilities. These include stealth rootkit de-
tection, stack checking and vulnerability exploit tracing. We
adapted realistic open-source programs (i.e., OP-TEE [34] and
Hafinum [16]) as the representative TrustZone system. The
OP-TEE and Hafinum hypervisor serve as targets of potentially
compromised TrustZone software.

1) Post-mortem forensics: We use SCRUTINIZER to capture
the memory dump and the registers, and primitively extend
Volatility for the post-mortem forensics analysis of the Trust-
Zone system. Note that we consider creating precise profiles
of TrustZone systems for Volatility to bridge semantic gaps as
out of scope, and we leave this for future research.

12

Fig. 8: Integrity checking with SCRUTINIZER.

Case 1: Stealth rootkit detection. Recent studies [63],
[75] implement rootkits within TrustZone to stealthily execute
malicious behaviors. We emulate a hypervisor-based Cloaker
rootkit [50] within the Hafinum. The rootkit gains control in
the EL2’s exception vector table to hook exception handlings.
After performing its malicious task, the rootkit jumps back to
the original exception handler functions to maintain stealth.

We extended a Volatility plugin for rootkit analysis of the
TrustZone hypervisor. As shown in Figure 8, our analysis
plugin first examines the VBAR_EL2 address from the re-
trieved Hafnium EL2 system registers, enabling us to obtain
the memory of the static exception vector table code. For
code integrity checking, the plugin then detects the rootkit
by initially comparing the hash of these code’s memory with
the expected benign ground truth. Upon detecting a mismatch,
we can further perform a differential comparison to locate the
malicious code.

2) Active analysis: In addition to performing post-mortem
forensics, we show that SCRUTINIZER is also capable of
actively analyzing TrustZone systems.

Case 2: Stack memory checking. Recent studies [53], [54]
have demonstrated the feasibility of launching ROP attacks
to execute arbitrary code within a compromised TrustZone
system. Memory corruption vulnerabilities in TrustZone code
supports the ROP attack. We launched a ROP attack on a
trusted app (TA) with a stack-based buffer overflow. After the
attack, we initiated a SCRUTINIZER session to inspect the TA’s
stack frame and CPU registers. We determined the overwritten
return address of the stack by examining the LR register. By
analyzing the corresponding stack memory pointed by the LR
register, we identified the specific content of the ROP gadget.

Case 3: Tracing vulnerability exploit in the TrustZone
hypervisor. Since there is no publicly available Hafinum CVE
payload, we manually review Hafinum commit log submit-
ted from 2018 to 2023 in the mainline git repository [56],
and select one real-world vulnerability [31] that can still
be reproduced in the latest Hafinum v2.9 to cause register
corruption. The ffa_call() function in Hafinum library
vmlib/hvc_call.c corrupts x17 register with x1 register
due to an incorrect return parameter passing. We set up a real-
world analysis scenario where we reproduced this vulnerability
and pinpointed it via SCRUTINIZER by the following steps. (i)
Running a OP-TEE function ffa_call(). (ii) Hafinum in
its ffa_call handler returns x1 register as NULL. (iii) OP-
TEE uses x17 register value as an address to access memory,
which will cause abnormal incidents.

To get an overview of the execution, we first enable the ETE
trace feature to find a function call sequence. By observing the
sequence, we notice that an incident occured after calling the
address of the function ffa_call(), which is disassembled

from the target binary. We attempt to intercept the function
call and analyze the return of the function call. Thus, we
use SCRUTINIZER to set up a memory trap at the address.
After the trap is triggered, we start to enter a trap-based
inspection until the incident occurs. We begin the process by
continuously setting traps at the position immediately after the
target’s instruction address by reading ELR_EL3 register. We
use SCRUTINIZER to capture registers and memory content
of current instruction location during the process. Then we
find that this unhandled exception is caused by a NULL point
dereference using x17 register, which is passed by x1 register
after returning from Hafinum. Thus, we successfully analyze
the process of vulnerability exploitation via SCRUTINIZER.

Note that this is to demonstrate the SCRUTINIZER’s ability
to securely inspect the TrustZone hypervisor. The state-of-
the-art tools [55], [65], [73] are difficult to be used securely
for such analysis. This is because TrustZone adversaries have
privileges to tamper with previous approaches whose Monitor
was part of the Secure world in pre-CCA systems.

VII. DISCUSSION

Denial of Service. Following the standard CCA security
model, SCRUTINIZER’s design excludes DoS attacks and does
not guarantee availability. Nevertheless, we briefly discuss
DoS attacks and potential solutions. Although adversaries
cannot compromise the integrity and confidentiality of SCRU-
TINIZER, they may attempt a DoS attack to prevent forensic
processes. The root cause lies in SCRUTINIZER’s reliance on
the client to invoke requests for switching to our Monitor. A
privileged adversary can stop the client, resulting in delayed or
blocked requests from the client to the Monitor. One potential
solution is to adopt an alternative reliable request beyond
the adversary’s control, such as one based on a physical
GPIO peripheral [65] that cannot be touched by the privileged
software and can interrupt the processor into Monitor. We
regard the alternative way as orthogonal to SCRUTINIZER and
leave it for future work.
Memory view consistency. SCRUTINIZER performs memory
acquisition in an out-of-band manner [86], which shares limita-
tions with this method. Specifically, SCRUTINIZER reuses the
page tables from the target to walk its virtual address space.
Consequently, if a malicious target preemptively removes a
data structure from its page tables, that structure might not
appear in SCRUTINIZER’s memory view. Although SCRUTI-
NIZER could monitor changes to page tables using memory
write traps, this approach would incur significant overheads.
Advanced attackers could manipulate the TTBR register to
alter the actual page tables used by the target, making them
different from those inspected by SCRUTINIZER. However,
within the EL3 Root world, we cannot intercept active page
table swaps (e.g., writes to TTBR regsiters) at EL1 and EL2
due to inherent restrictions by Arm architecture, potentially
missing hidden TTBR values set by attackers. Additionally,
attackers might disable the MMU for the target, rendering the
page tables obtained from the TTBR register invalid.

13

TABLE V: Comparison between SCRUTINIZER and the state-of-the-art inspection-related system

Arch Isolation
Mechanism TrustZone

Efficient
Memory

Acquisition

Memory
Traps

Instruction
Tracing

Native
Trusted Components

Addition
Increment (LoC) Target Type

Smile [88] x86 SMM ✗ ✗ ✗ ✗ Firmware 0.6K Intel SGX Enclaves
RDMI [62] x86 RNIC ✗ ✓ ✗ ✗ Extra Equipment 5.2K Kernel + Apps

00SEVen [69] x86 VMPLs ✗ ✗ ✓ ✗ VMPL0 N/A Kernel + Apps
TZ-RKP [43] Arm TZASC ✗ ✗ ✗ ✗ Monitor + QSEE N/A Kernel

NINJA [65] Arm TZASC ✗ ✗ ✓ ✓ Monitor + S-Hyp + OP-TEE N/A Apps
SCRUTINIZER Arm GPC ✓ ✓ ✓ ✓ Monitor 1.6K Kernel + Apps + Hypervisor

In fact, all memory acquisition/introspection systems [39],
[62], [65], [86], [88] face the issues with inconsistent views.
Despite these limitations, out-of-band solutions like these and
SCRUTINIZER have been shown to be effective. Importantly,
SCRUTINIZER supports paused targets for consistent analysis,
triggered by memory access traps during memory acquisition.
Analysts have the option to dump the full physical memory
(§V-B) for further forensic analysis. With a full memory dump,
these malicious-mapping evasion attacks can be mitigated by
heuristics/patterns analysis [59] to discern the fake data from
genuine data. With MMU disabled, the target runs in physical
addresses instead of virtual addresses. Both the agent and
GPC mechanism can use physical addresses for acquisition
and trapping. Since disabling MMU is more disruptive than
using faked mappings, it is more difficult to perform such
evasion. Designing an acquisition with a consistent memory
view is non-trivial and we leave it for future work.

VIII. RELATED WORK

Our work is motivated by the surge of attacks on Trust-
Zone systems [44]–[46], [68]. Even with the advent of CCA,
security risks still persist in the Secure world.
Memory and instruction inspection. Traditional analysis
tools employ virtualization [49], [71] and emulation technolo-
gies [57], [76], [79], [80] to dissect malware behavior. Recent
studies leverage modern hardware features on Arm processors
for debugging [65], [66], introspection [47], [55], [73], [74],
or tracing [52], [82], [84], [87]. Other relevant studies [62],
[69], [70], [86], [88] have explored forensics within the
x86 architecture. For instance, Smile [88] offers secure live
memory inspection for Intel SGX enclaves and operates in
system management mode (SMM). RDMI [62] enables rapid
memory access via equipped devices. 00SEVen [69] uses priv-
ileged in-VM agents to introspect AMD’s SEV confidential
VMs. However, none of these approaches specifically target
TrustZone systems, leaving secure forensics for TrustZone
systems as an unexplored area.

SCRUTINIZER is the first TrustZone forensics framework on
the Arm platform, featuring a small TCB, high performance,
and general functionality. We compare SCRUTINIZER with
similar systems in Table V. Despite the abundant research
into valuable functionalities on the Arm platform [43], [65],
there is a lack of practical tools when TrustZone systems
are compromised. For example, while NINJA [65] offers
hardware-level inspection targeting malware, its equal priv-
ilege level with TrustZone systems renders it insecure. In
contrast, SCRUTINIZER leverages the standard isolation mech-

anism in Arm CCA (i.e., GPC) to secure forensics against a
privileged adversary, whereas other approaches (e.g., SMM
in Smile) are not suitable for TrustZone forensics. Without
requiring hardware modifications or additional equipment,
SCRUTINIZER provides essential forensic functionalities, such
as memory traps and instruction tracing, which are absent in
other works like Smile. We ensure efficient memory acqui-
sition through the grafting performance optimization. Unlike
SCRUTINIZER, Smile relies on SMM, leading to significant
performance limitations since entering SMM suspends all CPU
cores. Additionally, compared to NINJA, SCRUTINIZER is
20x faster in memory acquisition and 49.5% faster in trap
performance. SCRUTINIZER operates without a hypervisor or
OS, and maintains thin additions to the Monitor by the agent
delegation mechanism, thereby debloating the highest privilege
domain to reduce its attack surface. Moreover, its security
assurances enable the inspection of compromised TrustZone
hypervisors, kernels, and applications in the face of software
attacks, whereas other works do not cover the hypervisor.
Arm CCA-based research. Recently, CCA-based research
has emerged in the literature [48], [58], [61], [72], [81],
[83], [85]. Li et al. [61] have developed Realms for con-
fidential computing and have verified the security of these
areas. Shelter [85] extends application-level enclaves for CCA.
ACAI [72] ensures that CCA-based confidential VMs can
utilize accelerators as a primary abstraction. CAGE [48]
introduces unified GPU support within CCA. HitchHiker [83]
protects system logs with CCA from compromised OS. Forti-
fyPatch [81] proposes a CCA-based live patching approach for
Linux-based hypervisors. Huang et al. [58] conduct a compar-
ison between CCA and TrustZone. However, SCRUTINIZER
differs from previous CCA-based systems in these aspects:
(i) SCRUTINIZER is the first secure forensics solution that
leverages CCA for compromised software in Arm TrustZone,
including application, OS, and hypervisor. We implement vari-
ous techniques to complement inspection functionalities in the
CCA Root world, even though the Root world is not inherently
designed to serve for forensics features; (ii) SCRUTINIZER
introduces isolation controls in the Root world, decoupling
memory access to an agent in the Secure world, minimizing
Root world’s TCB and ensuring protection from TrustZone
systems. It deploys grafting optimization into the agent,
reducing additional operations and improving performance
in memory acquisition; (iii) SCRUTINIZER leverages several
standard hardware features for secure memory access traps
and instruction tracing while preventing hardware tampering
and ensuring platform compatibility.

14

IX. CONCLUSION

We present SCRUTINIZER which targets compromised
TrustZone to provide a secure forensics foundation. Leverag-
ing a software-hardware co-design based on CCA, SCRUTI-
NIZER is capable of memory acquisition, memory access trap
and instruction tracing. SCRUTINIZER fills a critical gap where
there is a lack of forensics tools for privileged Arm TEEs un-
der threat of software exploitation. Experimental results show
that SCRUTINIZER securely provides memory and instruction
inspection of the potentially compromised TrustZone system,
outperforming state-of-the-art Arm solutions, and detects a
variety of attack vectors even in the TrustZone hypervisor.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers and the
members of COMPASS Lab for their insightful comments.
This work is partly supported by the National Natural Science
Foundation of China under Grant No.62372218 and Hong
Kong RGC Project (No. PolyU15231223). This work is also
in part supported by Ant Group Research Fund.

REFERENCES

[1] “Qsee privilege escalation vulnerability and ex-
ploit,” 2016, http://bits-please.blogspot.com/2016/05/
qsee-privilege-escalation-vulnerability.html.

[2] “Trustzone kernel privilege escalation,” 2016, http://bits-please.blogspot.
com/2016/06/trustzone-kernel-privilege-escalation.html.

[3] “Unlocking the motorola bootloader,” 2016, http://bits-please.blogspot.
com/2016/02/unlocking-motorola-bootloader.html.

[4] “War of the worlds - hijacking the linux kernel from
qsee,” 2016, https://bits-please.blogspot.com/2016/05/
war-of-worlds-hijacking-linux-kernel.html.

[5] “Linux/Unix nbench,” https://www.math.utah.edu/∼mayer/linux/bmark.
html, 2017.

[6] “Rekall memory forensic framework,” 2020, https://github.com/google/
rekall.

[7] “Volatile framework,” 2020, https://github.com/volatilityfoundation/
volatility.

[8] “Volatility–find hidden and injected code,” 2020, https:
//github.com/volatilityfoundation/volatility/blob/master/volatility/
plugins/malware/malfind.py.

[9] “Volatility–process list walking,” 2020, https://github.com/
volatilityfoundation/volatility/blob/master/volatility/plugins/linux/
pslist.py.

[10] “Volatility–tookit plugins,” 2020, https://github.com/
volatilityfoundation/volatility/tree/master/volatility/plugins.

[11] “Arm CCA Security Model 1.0,” https://developer.arm.com/
documentation/DEN0096/latest, 2021.

[12] “Arm Confidential Compute Architecture,” https://www.arm.com/
architecture/security-features/arm-confidential-compute-architecture,
2021.

[13] “ARM CoreLink TZC-400 TrustZone Address Space Controller
Technical Reference Manual,” https://developer.arm.com/documentation/
ddi0504/latest/, 2021.

[14] “Arm TrustZone Technology,” https://developer.arm.com/ip-products/
security-ip/trustzone, 2021.

[15] “cloc: Count lines of code.” https://github.com/AlDanial/cloc, 2021.
[16] “Hafnium architecture,” https://hafnium.googlesource.com/hafnium/+/

HEAD/docs/Architecture.md, 2021.
[17] “Introducing Arm’s Dynamic TrustZone technology,” https://community.

arm.com/arm-community-blogs/b/architectures-and-processors-blog/
posts/introducing-arms-dynamic-trustzone-technology, 2021.

[18] “The Realm Management Extension (RME) for Armv9-A,” https://
developer.arm.com/documentation/ddi0615/latest, 2021.

[19] “Arm Realm Management Extension (RME) System Architecture,”
https://developer.arm.com/documentation/den0129/ad, 2022.

[20] “Huawei hisilicon kunpeng arm server,”
2022, https://www.servethehome.com/
a-quick-look-huawei-hisilicon-kunpeng-920-arm-server-cpu/.

[21] “Amazon ec2 graviton,” 2023, https://aws.amazon.com/cn/ec2/graviton/.
[22] “Arm Architecture Reference Manual for A-profile architecture.” https:

//developer.arm.com/documentation/ddi0487/latest, 2023.
[23] “Arm coresight performance monitoring unit architecture,” 2023, https:

//developer.arm.com/documentation/ihi0091/latest/.
[24] “Arm embedded trace extension,” 2023, https://developer.arm.com/

documentation/102856/0100/Embedded-Trace-Extension.
[25] “Arm fixed virtual platforms.” https://developer.arm.com/

tools-and-software/simulation-models/fixed-virtual-platforms, 2023.
[26] “Arm generic interrupt controller,” 2023, https://developer.arm.com/

documentation/198123/0302/What-is-a-Generic-Interrupt-Controller-.
[27] “Arm v2m-juno r2 technical reference manual,” 2023, https://

developer.arm.com/documentation/100114/0200/Hardware-Description/
Juno-r2-ARM-Development-Platform-SoC.

[28] “Embedded trace buffer technical reference manual,” 2023, https://
developer.arm.com/documentation/ddi0242/b/.

[29] “Embedded trace macrocell architecture specification etmv4.0 to
etm4.6,” 2023, https://developer.arm.com/documentation/ihi0064/latest.

[30] “google tau t2a arm,” 2023, https://cloud.google.com/blog/products/
compute/tau-t2a-is-first-compute-engine-vm-on-an-arm-chip.

[31] “Hafnium vulnerability case,” 2023, https://git.trustedfirmware.org/
hafnium/hafnium.git/+/0690edd656c69ca36f92a10bd1299bceb1e2d597.

[32] “Huawei gaussdb,” 2023, https://www.huaweicloud.com/intl/en-us/
product/gaussdb.html.

[33] “Learn the architecture - trustzone for aarch64.” 2023, https://developer.
arm.com/documentation/102418/0101/TrustZone-in-the-processor.

[34] “opteeos,” 2023, https://git.trustedfirmware.org/OP-TEE/optee os.git/.
[35] “TF-RMM, released date 2022/11/09,” https://git.trustedfirmware.org/

TF-RMM/tf-rmm.git/, 2023.
[36] “The mission of the CVE Program,” https://cve.mitre.org/, 2023.
[37] “Trace buffer extension,” 2023, https://docs.kernel.org/trace/coresight/

coresight-trbe.html.
[38] “Trusted-Firmware-A,” https://git.trustedfirmware.org/TF-A/

trusted-firmware-a.git/, 2023.
[39] “Libvmi project. libvmi: Simplified virtual machine introspection,” 2024,

https://github.com/libvmi/libvmi.
[40] “Volatility 3.0, an advanced memory forensics framework,” 2024, https:

//github.com/volatilityfoundation/volatility3.
[41] Arm LTD., “Learn the architecture: Debugger usage on armv8-a,” 2021,

https://developer.arm.com/documentation/102140/0200/Breakpoints.
[42] ——, “Reference arm cca integration stack software user

guide,” 2023, https://gitlab.arm.com/arm-reference-solutions/
arm-reference-solutions-docs/-/blob/master/docs/aemfvp-a-rme/
user-guide.rst.

[43] A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh, J. Ma,
and W. Shen, “Hypervision across worlds: Real-time kernel protection
from the arm trustzone secure world,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security (CCS),
2014.

[44] M. Busch, A. Machiry, C. Spensky, G. Vigna, C. Kruegel, and M. Payer,
“Teezz: Fuzzing trusted applications on cots android devices,” in 2023
2023 IEEE Symposium on Security and Privacy (SP), 2023.

[45] D. Cerdeira, J. Martins, N. Santos, and S. Pinto, “ReZone: Disarming
TrustZone with TEE privilege reduction,” in 31st USENIX Security
Symposium (USENIX Security), 2022.

[46] D. Cerdeira, N. Santos, P. Fonseca, and S. Pinto, “Sok: Understanding
the prevailing security vulnerabilities in trustzone-assisted tee systems,”
in 2020 IEEE Symposium on Security and Privacy (SP), 2020.

[47] Z. Chen, H. Qiu, and X. Ding, “Dscope: To reliably and securely acquire
live data from kernel-compromised iot devices,” in 28th European
Symposium on Research in Computer Security (ESORICS), 2023.

[48] W. Chenxu, Z. Fengwei, D. Yunjie, L. Kevin, C. Jiannong, N. Zhenyu,
Y. Shoumeng, and H. Zhengyu, “Cage: Complementing arm cca with
gpu extensions,” in Proceedings of the 31st Annual Network and Dis-
tributed System Security Symposium 2024 (NDSS), 2024.

[49] C. Dall and J. Nieh, “Kvm/arm: the design and implementation of
the linux arm hypervisor,” in Proceedings of the 19th international
conference on Architectural support for programming languages and
operating systems (ASPLOS), 2014.

[50] F. M. David, E. M. Chan, J. C. Carlyle, and R. H. Campbell, “Cloaker:
Hardware supported rootkit concealment,” in 2008 IEEE Symposium on
Security and Privacy (SP’08). IEEE, 2008, pp. 296–310.

15

http://bits-please.blogspot.com/2016/05/qsee-privilege-escalation-vulnerability.html
http://bits-please.blogspot.com/2016/05/qsee-privilege-escalation-vulnerability.html
http://bits-please.blogspot.com/2016/06/trustzone-kernel-privilege-escalation.html
http://bits-please.blogspot.com/2016/06/trustzone-kernel-privilege-escalation.html
http://bits-please.blogspot.com/2016/02/unlocking-motorola-bootloader.html
http://bits-please.blogspot.com/2016/02/unlocking-motorola-bootloader.html
https://bits-please.blogspot.com/2016/05/war-of-worlds-hijacking-linux-kernel.html
https://bits-please.blogspot.com/2016/05/war-of-worlds-hijacking-linux-kernel.html
https://www.math.utah.edu/~mayer/linux/bmark.html
https://www.math.utah.edu/~mayer/linux/bmark.html
https://github.com/google/rekall
https://github.com/google/rekall
https://github.com/volatilityfoundation/volatility
https://github.com/volatilityfoundation/volatility
https://github.com/volatilityfoundation/volatility/blob/master/volatility/plugins/malware/malfind.py
https://github.com/volatilityfoundation/volatility/blob/master/volatility/plugins/malware/malfind.py
https://github.com/volatilityfoundation/volatility/blob/master/volatility/plugins/malware/malfind.py
https://github.com/volatilityfoundation/volatility/blob/master/volatility/plugins/linux/pslist.py
https://github.com/volatilityfoundation/volatility/blob/master/volatility/plugins/linux/pslist.py
https://github.com/volatilityfoundation/volatility/blob/master/volatility/plugins/linux/pslist.py
https://github.com/volatilityfoundation/volatility/tree/master/volatility/plugins
https://github.com/volatilityfoundation/volatility/tree/master/volatility/plugins
https://developer.arm.com/documentation/DEN0096/latest
https://developer.arm.com/documentation/DEN0096/latest
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://developer.arm.com/documentation/ddi0504/latest/
https://developer.arm.com/documentation/ddi0504/latest/
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
https://github.com/AlDanial/cloc
https://hafnium.googlesource.com/hafnium/+/HEAD/docs/Architecture.md
https://hafnium.googlesource.com/hafnium/+/HEAD/docs/Architecture.md
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/introducing-arms-dynamic-trustzone-technology
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/introducing-arms-dynamic-trustzone-technology
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/introducing-arms-dynamic-trustzone-technology
https://developer.arm.com/documentation/ddi0615/latest
https://developer.arm.com/documentation/ddi0615/latest
https://developer.arm.com/documentation/den0129/ad
https://www.servethehome.com/a-quick-look-huawei-hisilicon-kunpeng-920-arm-server-cpu/
https://www.servethehome.com/a-quick-look-huawei-hisilicon-kunpeng-920-arm-server-cpu/
https://aws.amazon.com/cn/ec2/graviton/
https://developer.arm.com/documentation/ddi0487/latest
https://developer.arm.com/documentation/ddi0487/latest
https://developer.arm.com/documentation/ihi0091/latest/
https://developer.arm.com/documentation/ihi0091/latest/
https://developer.arm.com/documentation/102856/0100/Embedded-Trace-Extension
https://developer.arm.com/documentation/102856/0100/Embedded-Trace-Extension
https://developer.arm.com/tools-and-software/simulation-models/fixed-virtual-platforms
https://developer.arm.com/tools-and-software/simulation-models/fixed-virtual-platforms
https://developer.arm.com/documentation/198123/0302/What-is-a-Generic-Interrupt-Controller-
https://developer.arm.com/documentation/198123/0302/What-is-a-Generic-Interrupt-Controller-
https://developer.arm.com/documentation/100114/0200/Hardware-Description/Juno-r2-ARM-Development-Platform-SoC
https://developer.arm.com/documentation/100114/0200/Hardware-Description/Juno-r2-ARM-Development-Platform-SoC
https://developer.arm.com/documentation/100114/0200/Hardware-Description/Juno-r2-ARM-Development-Platform-SoC
https://developer.arm.com/documentation/ddi0242/b/
https://developer.arm.com/documentation/ddi0242/b/
https://developer.arm.com/documentation/ihi0064/latest
https://cloud.google.com/blog/products/compute/tau-t2a-is-first-compute-engine-vm-on-an-arm-chip
https://cloud.google.com/blog/products/compute/tau-t2a-is-first-compute-engine-vm-on-an-arm-chip
https://git.trustedfirmware.org/hafnium/hafnium.git/+/0690edd656c69ca36f92a10bd1299bceb1e2d597
https://git.trustedfirmware.org/hafnium/hafnium.git/+/0690edd656c69ca36f92a10bd1299bceb1e2d597
https://www.huaweicloud.com/intl/en-us/product/gaussdb.html
https://www.huaweicloud.com/intl/en-us/product/gaussdb.html
https://developer.arm.com/documentation/102418/0101/TrustZone-in-the-processor
https://developer.arm.com/documentation/102418/0101/TrustZone-in-the-processor
https://git.trustedfirmware.org/OP-TEE/optee_os.git/
https://git.trustedfirmware.org/TF-RMM/tf-rmm.git/
https://git.trustedfirmware.org/TF-RMM/tf-rmm.git/
https://cve.mitre.org/
https://docs.kernel.org/trace/coresight/coresight-trbe.html
https://docs.kernel.org/trace/coresight/coresight-trbe.html
https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/
https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/
https://github.com/libvmi/libvmi
https://github.com/volatilityfoundation/volatility3
https://github.com/volatilityfoundation/volatility3
https://developer.arm.com/documentation/102140/0200/Breakpoints
https://gitlab.arm.com/arm-reference-solutions/arm-reference-solutions-docs/-/blob/master/docs/aemfvp-a-rme/user-guide.rst
https://gitlab.arm.com/arm-reference-solutions/arm-reference-solutions-docs/-/blob/master/docs/aemfvp-a-rme/user-guide.rst
https://gitlab.arm.com/arm-reference-solutions/arm-reference-solutions-docs/-/blob/master/docs/aemfvp-a-rme/user-guide.rst

[51] Y. Deng, C. Wang, S. Yu, S. Liu, Z. Ning, K. Leach, J. Li, S. Yan, Z. He,
J. Cao et al., “Strongbox: A gpu tee on arm endpoints,” in Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2022.

[52] Y. Du, Z. Ning, J. Xu, Z. Wang, Y.-H. Lin, F. Zhang, X. Xing, and
B. Mao, “Hart: Hardware-assisted kernel module tracing on arm,” in 25th
European Symposium on Research in Computer Security (ESORICS),
2020.

[53] F. Fleischer, M. Busch, and P. Kuhrt, “Memory corruption attacks within
android tees: a case study based on op-tee,” in Proceedings of the
15th International Conference on Availability, Reliability and Security
(ARES), 2020.

[54] Gal Beniamini., “Trust issues: Exploiting trustzone
tees,” 2020, https://googleprojectzero.blogspot.com/2017/07/
trust-issues-exploiting-trustzone-tees.html.

[55] M. Guerra, B. Taubmann, H. P. Reiser, S. Yalew, and M. Correia,
“Introspection for arm trustzone with the itz library,” in 2018 IEEE
International Conference on Software Quality, Reliability and Security
(QRS), 2018.

[56] Hafnium repo., “commits,” 2024, https://git.trustedfirmware.org/
hafnium/hafnium.git/+log.

[57] L. Harrison, H. Vijayakumar, R. Padhye, K. Sen, and M. Grace,
“Partemu: Enabling dynamic analysis of real-world trustzone software
using emulation,” in 29th USENIX Security Symposium (USENIX
Security), 2020.

[58] H. Huang, F. Zhang, S. Yan, T. Wei, and Z. He, “SoK: A Comparison
Study of Arm TrustZone and CCA,” in 2024 IEEE International Sym-
posium on Secure and Private Execution Environment Design (SEED),
2024.

[59] D. Jang, H. Lee, M. Kim, D. Kim, D. Kim, and B. B. Kang, “Atra:
Address translation redirection attack against hardware-based external
monitors,” in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security (CCS’14), 2014.

[60] J. Li, D. Gu, C. Deng, and Y. Luo, “Digital forensic analysis on runtime
instruction flow,” in Forensics in Telecommunications, Information, and
Multimedia: Third International ICST Conference, e-Forensics 2010,
Shanghai, China, November 11-12, 2010, Revised Selected Papers 3.
Springer, 2011, pp. 168–178.

[61] X. Li, X. Li, C. Dall, R. Gu, J. Nieh, Y. Sait, and G. Stockwell, “Design
and verification of the arm confidential compute architecture,” in 16th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 2022.

[62] H. Liu, J. Xing, Y. Huang, D. Zhuo, S. Devadas, and A. Chen, “Remote
direct memory introspection,” in 32nd USENIX Security Symposium
(USENIX Security 23), 2023, pp. 6043–6060.

[63] D. Marth, C. Hlauschek, C. Schanes, and T. Grechenig, “Abusing trust:
Mobile kernel subversion via trustzone rootkits,” in 2022 IEEE Security
and Privacy Workshops (SPW). IEEE, 2022, pp. 265–276.

[64] Z. Ning, C. Wang, Y. Chen, F. Zhang, and J. Cao, “Revisiting arm
debugging features: Nailgun and its defense,” IEEE Transactions on
Dependable and Secure Computing (TDSC), 2021.

[65] Z. Ning and F. Zhang, “Ninja: Towards Transparent Tracing and
Debugging on Arm,” in 26th USENIX Security Symposium (USENIX
Security), 2017.

[66] ——, “Hardware-assisted transparent tracing and debugging on arm,” in
IEEE Transactions on Information Forensics and Security (TIFS), 2018.

[67] ——, “Understanding the security of arm debugging features,” in 2019
IEEE Symposium on Security and Privacy (SP), 2019.

[68] S. Pinto and N. Santos, “Demystifying arm trustzone: A comprehensive
survey,” ACM Computing Surveys (CSUR), 2019.

[69] F. Schwarz and C. Rossow, “00seven–re-enabling virtual machine foren-
sics: Introspecting confidential vms using privileged in-vm agents,” in
33rd USENIX Security Symposium (USENIX Security 24), 2024.

[70] M. I. Sharif, W. Lee, W. Cui, and A. Lanzi, “Secure in-vm monitoring
using hardware virtualization,” in Proceedings of the 16th ACM confer-
ence on Computer and communications security (CCS), 2009.

[71] H. Shi, A. Alwabel, and J. Mirkovic, “Cardinal pill testing of system
virtual machines,” in 23rd USENIX Security Symposium (USENIX
Security), 2014.

[72] S. Sridhara, A. Bertschi, B. Schlüter, M. Kuhne, F. Aliberti, and
S. Shinde, “Acai: Protecting accelerator execution with arm confi-
dential computing architecture,” in 33rd USENIX Security Symposium
(USENIX Security), 2024.

[73] H. Sun, K. Sun, Y. Wang, and J. Jing, “Reliable and trustworthy
memory acquisition on smartphones,” IEEE Transactions on Information
Forensics and Security (TIFS), 2015.

[74] H. Sun, K. Sun, Y. Wang, J. Jing, and S. Jajodia, “Trustdump: Reliable
memory acquisition on smartphones,” in 19th European Symposium on
Research in Computer Security (ESORICS), 2014.

[75] T. Roth., “Next generation mobile rootkits,” 2013, https://hackinparis.
com/data/slides/2013/Slidesthomasroth.pdf.

[76] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro, “Copperdroid: Auto-
matic reconstruction of android malware behaviors,” in In Proceedings
of 22nd Network and Distributed System Security Symposium (NDSS),
2015.

[77] S. Wan, M. Sun, K. Sun, N. Zhang, and X. He, “Rustee: developing
memory-safe arm trustzone applications,” in Annual Computer Security
Applications Conference (ACSAC), 2020.

[78] C. Wang, Y. Deng, Z. Ning, K. Leach, J. Li, S. Yan, Z. He, J. Cao,
and F. Zhang, “Building a lightweight trusted execution environment
for arm gpus,” IEEE Transactions on Dependable and Secure Computing
(TDSC), 2023.

[79] L. K. Yan and H. Yin, “Droidscope: Seamlessly reconstructing the os
and dalvik semantic views for dynamic android malware analysis,” in
21st USENIX security symposium (USENIX Security), 2012.

[80] J. Yang, J. Tang, R. Yan, and T. Xiang, “Android malware detection
method based on permission complement and api calls,” Chinese Journal
of Electronics, 2022.

[81] Z. Ye, L. Zhou, F. Zhang, W. Jin, Z. Ning, Y. Hu, and Z. Qin, “Fortify-
patch: Towards tamper-resistant live patching in linux-based hypervisor,”
in 33rd ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA), 2024.

[82] T. Yue, F. Zhang, Z. Ning, P. Wang, X. Zhou, K. Lu, and L. Zhou,
“Armor: Protecting software against hardware tracing techniques,” IEEE
Transactions on Information Forensics and Security (TIFS), 2024.

[83] C. Zhang, J. Zeng, Y. Zhang, A. Ahmad, F. Zhang, Z. Liang, and
H. Jin, “The hitchhiker’s guide to high-assurance system observability
protection with efficient permission switches,” in Proceedings of the
2024 ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2024.

[84] Y. Zhang, Y. Hu, H. Li, W. Shi, Z. Ning, X. Luo, and F. Zhang, “Alligator
in vest: A practical failure-diagnosis framework via arm hardware
features,” in Proceedings of the 32nd ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA), 2023.

[85] Y. Zhang, Y. Hu, Z. Ning, F. Zhang, X. Luo, H. Huang, S. Yan, and
Z. He, “Shelter: Extending arm cca with isolation in user space,” in
32nd USENIX Security Symposium (USENIX Security), 2023.

[86] S. Zhao, X. Ding, W. Xu, and D. Gu, “Seeing through the same lens:
introspecting guest address space at native speed,” in 26th USENIX
Security Symposium (USENIX Security), 2017.

[87] H. Zhou, S. Wu, X. Luo, T. Wang, Y. Zhou, C. Zhang, and H. Cai,
“Ncscope: hardware-assisted analyzer for native code in android apps,”
in Proceedings of the 31st ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA), 2022.

[88] L. Zhou, X. Ding, and F. Zhang, “Smile: Secure memory introspection
for live enclave,” in 2022 IEEE Symposium on Security and Privacy (SP),
2022.

16

https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html
https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html
https://git.trustedfirmware.org/hafnium/hafnium.git/+log
https://git.trustedfirmware.org/hafnium/hafnium.git/+log
https://hackinparis.com/data/slides/2013/Slidesthomasroth.pdf
https://hackinparis.com/data/slides/2013/Slidesthomasroth.pdf

	Introduction
	Background
	TrustZone and CCA
	Arm Standard Hardware Features

	Preliminaries
	Scope of Target Platforms
	Threat Model and Assumptions
	Design Goals

	Design
	Design Overview
	Memory Acquisition
	Isolation Control for Agent
	Memory Acquisition Agent

	Memory Access Traps
	Instruction Tracing
	Isolation Control for Hardware Access

	Implementation
	TF-A Integration
	Memory Acquisition Operations
	Authorized Secure Communication

	Evaluation
	RQ1: Code Size of Scrutinizer
	RQ2: Security of Scrutinizer
	Security Analysis
	Evaluation of Practical Attacks

	RQ3: Performance of Scrutinizer
	Performance of Memory Acquisition
	Performance of Memory Access Traps
	Performance of Instruction Tracing

	RQ4: Applications of Scrutinizer
	Post-mortem forensics
	Active analysis

	Discussion
	Related Work
	Conclusion
	References

